Supporting Information

Manipulating the hydrogen evolution pathway on composition-tunable CuNi nanoalloys

Zhaoyong Lin,[†] Jiling Li,[†] Lihua Li, Lili Yu, Weijia Li, and Guowei Yang*

State Key Laboratory of Optoelectronic Materials and Technologies, Nanotechnology

Research Center, School of Materials Science & Engineering, Sun Yat-sen University,

Guangzhou 510275, Guangdong, P. R. China

[†] These authors contributed equally to this work.

*Corresponding author: <u>stsygw@mail.sysu.edu.cn</u>

Fig. S1. XRD patterns of the products prepared by laser ablation of the $Cu_{50}Ni_{50}$ target in isopropanol, deionized water and the 50% isopropanol aqueous solution.

Fig. S2. GC-MS analyses of the isopropanol solutions after 5-h laser ablation exposing to air, O_2 and N_2 , respectively.

Fig. S3. The magnifications of the region between 2.6 to 3.1 min of the GC-MS spectra in Figure S2.

Fig. S4. H₂ evolution amounts of the systems using CuNi nanoalloys with different compositions and loadings as cocatalysts.

Fig. S5. XRD patterns of the TiO_2 and $TiO_2/Cu_{63}Ni_{37}$ nanocrystals.

Fig. S6. EDX elemental mapping of an individual $Cu_{63}Ni_{37}$ NP.

Fig. S7. Compositional line-scanning profile of Cu and Ni elements of the $Cu_{63}Ni_{37}$ NP.

Fig. S8. Cu 2p XPS spectrum of the $Cu_{63}Ni_{37}$ NPs.

Fig. S9. Ni 2p XPS spectrum of the Cu₆₃Ni₃₇ NPs.