Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

Electrochemical properties and structural evolution of O3-type layered sodium mixed transition metal oxides with trivalent nickel

Plousia Vassilaras,^a Deok-Hwang Kwon,^b Stephen Dacek,^a Tan Shi,^b Dong-Hwa Seo,^b Gerbrand Ceder,^{a,b,c} and Jae Chul Kim^{c,*}

^aDepartment of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 ^bDepartment of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720 ^cMaterials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720

Table S1. Lattice parameters of NaNi_{0.5}Co_{0.5}O₂ and NaNi_{0.5}Fe_{0.5}O₂ obtained from Rietveld refinement using C2/m symmetry. c_h is derived from refinement with R³m symmetry.

Composition	a _m (Å)	<i>b_m</i> (Å)	c _m (Å)	β (°)	a _m / b _m	<i>c_m</i> 3sinβ (Å)	c_h (Å)
NaNi _{0.5} Co _{0.5} O ₂	5.0580(2)	2.9130(2)	5.4774(2)	107.93(7)	1.736	15.6342	15.6441
NaNi _{0.5} Fe _{0.5} O ₂	5.1776(2)	2.9882(1)	5.5792(2)	107.918(2)	1.733	15.9256	15.9236

Table S2. a_m to b_m ratio of Na_{1-x}Ni_{0.5}Co_{0.5}O₂ obtained from Rietveld refinement using the C2/m symmetry. (Site occupancy, atomic coordination, and B-factors are not refined.)

<i>x</i> in Na _{1-x} Ni _{0.5} Co _{0.5} O ₂	a _m (Å)	<i>b_m</i> (Å)	a _m / b _m	Symmetry
0.15	4.9140	2.8849	1.703	C2/m (O'3)
0.30	4.9032	2.8238	1.755	C2/m (P'3)
0.38	4.8769	2.8179	1.730	R ³ m (P3)
0.49	4.8805	2.8000	1.743	C/2m (P"3)
0.63	5.3450	2.7998	1.909	C/2m (O"3)

Table S3. Lattice parameters of $Na_{1-x}Ni_{0.5}Fe_{0.5}O_2$ obtained from Rietveld refinement using the C2/m symmetry. (Site occupancy, atomic coordination, and B-factors are not refined.)

<i>x</i> in Na _{1-x} Ni _{0.5} Fe _{0.5} O ₂	a _m (Å)	<i>b_m</i> (Å)	<i>c_m</i> (Å)	β (°)	a _m / b _m	<i>c_m</i> 3sinβ (Å)	c _h (Å)
0.17	5.111(3)	2.965(2)	5.644(3)	107.54(7)	1.738	16.1131	16.112(8)
0.49	4.978(1)	2.887(9)	5.870(1)	106.46(4)	1.737	16.986	16.987(7)

Figure S1. Hexagonal ($R^{\overline{3}}m$) and monoclinic (C2/m) unit cells in O3-type layered rock-salt structure.

Figure S2. Charge and discharge capacities of (a) $NaNi_{0.5}Co_{0.5}O_2$ and $NaNi_{0.5}Fe_{0.5}O_2$ at various rates at RT

Figure S3. Voltage profiles of $NaNi_{0.5}Co_{0.5}O_2$ with respect to specific capacity in various conditions (20 cycles)

Figure S4. Charge and discharge capacities of (a) $NaNi_{0.5}Co_{0.5}O_2$ and $NaNi_{0.5}Fe_{0.5}O_2$ at a C/10 rate at RT

Figure S5. Voltage profiles of $NaNi_{0.5}Fe_{0.5}O_2$ with respect to specific capacity in various conditions (20 cycles)

Figure S6. In situ XRD patterns obtained at different voltages during cycling. Tick marks indicate peaks from *in situ* cell components.

Figure S7. In situ XRD patterns of $NaNi_{0.5}Fe_{0.5}O_2$ around the (003)_h peak.

Figure S8. Lattice parameter evolution of (a) $Na_{1-x}Ni_{0.5}Co_{0.5}O_2$ and (b) $Na_{1-x}Ni_{0.5}Fe_{0.5}O_2$ in the first charge and discharge