Supplementary tables

Table S1 Electrochemical parameters for all-weather solar cells. R_s is series resistance; R_{ct1} refers to charge-transfer resistance at Pt counter electrode/electrolyte interface; R_{ct2} corresponds to charge-transfer resistance at photoanode/electrolyte interface. The tail in the low frequency region indicates Warburg diffusion process of redox couples (*W*). CPE1 and CPE2 are constant

Photoanodes with	Rs	R_{ct1}	R_{ct2}	W	τ
CQDs at various	(ohm cm²)	(ohm cm²)	(ohm cm²)	(ohm cm²)	(ms)
heating times (h)					
3	4.63	172	1743	223	16
4	2.30	102	948	120	41
6	3.43	44.6	416	30.5	90
9	2.54	6.7	126	10.4	94
12	2.84	11.5	524	29.5	88
15	8.65	12.9	651	33.1	74
20	3.48	16.5	987	37.4	27

phase elements; τ is electron lifetime at photoanode.

Supplementary figures

Fig. S1 UV-vis absorption spectra of the diluted CQDs solutions at a heating time of (a) 3 h, (b) 4 h, (c) 6 h, (d) 12 h, (e) 15 h, and (f) 20 h.

Fig. S2 PL emission spectra of the CQDs at a heating time of (a) 3 h, (b) 4 h, (c) 6 h, (d) 12 h, (e) 15 h, and (f) 20 h.

Fig. S3 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 3 h.

Fig. S4 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 4 h.

Fig. S5 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 6 h.

Fig. S6 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 9 h.

Fig. S7 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 12 h.

Fig. S8 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 15 h.

Fig. S9 The random photovoltaic parameters for all-weather solar cells sensitized with CQDs at a heating time of 20 h.

Fig. S10 The PL emission spectrum of green-emitting LPP phosphors under 330 nm light excitation.

Fig. S11 The PL emission spectrum of green-emitting LPP phosphors under 330 nm light excitation.

Fig. S12 The Bode EIS plots for all-weather solar cells with CQD sensitized *m*-TiO₂/LPP photoanodes.

Fig. S13 The dark J-V curves for all-weather solar cells with CQD sensitized *m*-TiO₂/LPP photoanode at various decay times. The heating time for CQDs is 9 h.