## **Electronic Supplementary Information (ESI)**

# Tin Dioxide as a High-Performance Catalyst towards Ce(VI)/Ce(III) Redox Reaction for Redox Flow Battery Applications

Zhaolin Na<sup>a,b</sup>, Xuxu Wang<sup>a,b</sup>, Dongming Yin<sup>a,b</sup>, Limin Wang<sup>a,c,\*</sup>

<sup>a</sup> State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, CAS, Changchun, 130022, China
<sup>b</sup> Changzhou Institute of Energy Storage Materials and Devices, Changzhou 213000, China
<sup>c</sup> University of Chinese Academy of Sciences, Beijing 100049, China
\*Corresponding author: Limin Wang, Email: lmwang@ciac.ac.cn, Tel: +86-431-85262447, Fax: +86-431-85262836.



**Fig. S1.** Digital photograph of (a) the three-electrode electrochemical cell and (b) the actual test rig being tested.



Fig. S2. SEM images of the GFSN electrodes.



**Fig. S3.** CV curves of the (a) GF, (b) AGF and (c) GFSN electrodes in 0.05 M Ce(III) methanesulfonate + 1.0 M MSA electrolyte from 0.8 V and 1.8 V *vs.* Ag/AgCl under various scan rate. Insets: the plot of the peak current *vs.* the square root of each scan rate.

#### S1. The electrochemical surface area (ECSA)

The electrochemical surface area (ECSA) that is available for the electron transfer to/from the species contained in solution can be estimated from the Randles-Sevcik equation. This equation relates the peak current with the square root of the scan rate, as follows:

$$i_p = 2.99 \times 10^5 n (\alpha n)^{1/2} A D_0^{1/2} C_0 v^{1/2}$$

where  $i_p$  is the peak current, *n* is the number of electrons participating in the reaction,  $\alpha$  is the transfer coefficient (0.5), *A* is the ECSA (cm<sup>2</sup>),  $C_0$  is the initial concentration of the electroactive species (mol cm<sup>-3</sup>),  $D_0$  is the diffusion coefficient (cm<sup>2</sup> s<sup>-1</sup>) and *v* is the scan rate (V s<sup>-1</sup>). The values of the diffusion coefficients were obtained from bibliography (S1),  $0.69 \times 10^{-6}$  cm<sup>2</sup> s<sup>-1</sup>.



Fig. S4. Comparison of standard rate constant (k) for GF, AGF and PGF.

### S2. The standard rate constant, k<sub>0</sub>

The peak current in the CV curves (Fig. S3) can be described by the following equation for a totally irreversible reaction:

$$i_{p} = 0.227 n FAC_{0}k_{0} \exp\left[\frac{-\alpha n F\left(E_{p}-E^{0}\right)}{RT}\right]$$

where  $i_p$  is the peak current, *n* is the number of electrons participating in the reaction, *F* is the Faraday constant, *A* is the active surface area of the electrode,  $C_0$  is the initial concentration of the electroactive species,  $\alpha$  is the transfer coefficient (0.5),  $E_p$  is the peak potential,  $E^0$  is the standard electrode potential, *R* is the gas constant, and *T* is the temperature. According to this equation, a plot of  $\ln(i_p)$  vs.  $E_p$ - $E^0$ , should yield a straight line with a slope of - $\alpha nF/(RT)$ , and an intercept proportional to  $k_0$ , from which  $k_0$  values can be calculated (Fig. S4).



**Fig. S5.** SEM images of various GFSN samples with with different heat treatment temperatures (a) 500 °C, (b) 600 °C and (C) 700 °C.



**Fig. S6.** LSVs performed in the electrolytes of 1.0 M MSA without cerium salts from 0.8 V and 2.0 V at 10 mV s<sup>-1</sup>.



**Fig. S7.** (a)-(b) SEM images and (c)-(e) corresponding EDS mapping of the  $SnO_2$  catalyst coated graphire felt electrode after 100 charge/discharge cycles.

## **Supplementary Reference**

(S1) P. K. Leung, C. Ponce de Le' on, C. T. J. Low and F. C. Walsh, *Electrochim. Acta*, 2011, 56, 2145–2153.