Efficient Photocatalytic Reduction of Dinitrogen to Ammonia on

Bismuth Monoxide Quantum Dots

Songmei Sun¹, Qi An², Wenzhong Wang^{1*}, Ling Zhang¹, Jianjun Liu^{1*}, William A.

Goddard III²

¹State Key Laboratory of High Performance Ceramics and Superfine Microstructure,

Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P.

R. China

²Division of Chemistry and Chemical Engineering, California Institute of Technology,

Pasadena, California 91125, United States

*Address correspondence to wzwang@mail.sic.ac.cn, jliu@mail.sic.ac.cn

Figure S1 XRD pattern of the as-prepared 0.2%wt Fe-TiO₂ sample.

Figure S2. UV-vis diffuse reflection spectrum of the BiO particles.

Figure S3 TEM image of the BiO quantum dots after cycles of photocatalytic reaction

Figure S4 1H NMR spectrum of the obtained ammonia from photocatalytic N_2 reduction using 50% $^{15}N_2$ and 50% $^{14}N_2$ as the purge gas.

Figure S5 N₂-TPD profiles of the as-prepared BiO catalyst.

Figure S2

Figure S6 Changes of cathodic peaks for N_2 reduction on BiO electrode along with the scan time in N_2 saturated 0.5 M Na₂SO₄ at pH 3.8. Scan rate: 100 mV/s.

Figure S7 Schematic crystal structure of BiO which clearly shows the coordination environment of Bi and O atoms.

Figure S8 Hydrogen and oxygen evolution during the photocatalytic ammonia synthesis process in a closed reaction system.