Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information (ESI)

High Photovoltage All-Polymer Solar Cells based on a Diketopyrrolopyrrole-Isoindigo Acceptor Polymer

Zhaojun Li, Xiaofeng Xu,* Wei Zhang, Zewdneh Genene, Wendimagegn Mammo, Arkady Yartsev, Mats R. Andersson, René A. J. Janssen,* and Ergang Wang*

* Corresponding authors: X. Xu, e-mail: xixu@chalmers.se

R. A. J. Janssen, e-mail: r.a.j.janssen@tue.nl

E. Wang, e-mail: ergang@chalmers.se

Table of Contents

1. Synthesis	S2
2. Optical and electrochemical properties	S4
3. All-PSCs Optimization	S5
4. Energy loss (<i>E</i> _{loss}) characteristics	S6
5. Space charge limited current (SCLC) mobilities	S7
6. EQE characteristics under bias light	S8
7. Time resolved photoluminescence (TRPL) parameters	S9
8. Absolute fluorescence quenching yield measurements	S9
9. Internal quantum efficiency (IQE) parameters	S10
10. References	S10

1. Synthesis

All starting materials, reagents and the donor polymer PTB7-Th were purchased from commercial sources and used without further purification. The synthesis of the donor polymer PBDTTS-FTAZ was described in our previous work.¹ Monomer 3,6-bis(5-bromopyridin-2-yl)-2,5-bis(2-hexyldecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (**M1**) and monomer 2,5-bis(2-hexyldecyl)-3,6-bis(5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione (**M2**) were prepared according to literature procedures and were recrystallized twice to high purity.^{2, 3} The synthesis of the monomer (E)-1,1'-bis(2-hexyldecyl)-6,6'-bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-[3,3'-biindolinylidene]-2,2'-dione (**M3**) was described in our previous work.⁴

Synthesis of PTDPP-PyDPP: Monomer M1 (134.5 mg, 0.15 mmol), M2 (150.2 mg, 0.15 mmol), tri(dibenzylideneacetone)dipalladium(0) (Pd₂(dba)₃) (3 mg) and tri(*o*-tolyl)phosphine (P(*o*-tol)₃) (5 mg) were dissolved in toluene (12 mL) under nitrogen atmosphere. Then 2M K₂CO₃ aqueous solution (2 mL) and Aliquat 336 (2 drops) were added to the mixture. The reaction mixture was heated at 80 °C with vigorous stirring for 12 h. After cooling to room temperature, chloroform (100 mL) was added to the reaction mixture and then the polymer was precipitated by pouring the diluted reaction mixture into acetone (250 mL) and was collected by filtration through a 0.45 μ m Teflon filter. Then the polymer was subjected to Soxhlet extraction with acetone, diethyl ether and chloroform. The chloroform fraction was purified by passing through a short silica gel column and then precipitated from acetone. Finally, the polymer was obtained by filtrating through 0.45 μ m Teflon filter and dried in the vacuum oven at 40 °C overnight. Yield: 140 mg (90%).

Synthesis of PIID-PyDPP: The polymer was prepared starting from M1 (134.5 mg, 0.15 mmol) and M3 (144.5 mg, 0.15 mmol) following a procedure similar to the one described above. Yield: 177 mg (80%).

Scheme S1 Synthetic routes of the monomers M1 and M2.

Scheme S2 Synthetic routes of the acceptor polymers.

2. Optical and electrochemical properties

Fig. S1 (a) Normalized UV-Vis-NIR absorption spectra of the polymers in solution. (b) Absorption coefficients of the polymers in chlorobenzene solution and (c) thin films. (d) Normalized UV-Vis-NIR absorption spectra of the polymer:polymer blends (2.5:1, w:w).

Fig. S2 SWV measurements of the polymers and $PC_{71}BM$.

3. All-PSCs Optimization

Table S1 (a) Photovoltaic parameters of the PIID-PyDPP:PC₇₁BM, PTDPP-PyDPP:PC₇₁BM and PTB7-Th: PTDPP-PyDPP solar cells

donor:acceptor	D:A (w:w)	V _{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)	Thickness (nm)
PIID-PyDPP:PC ₇₁ BM	1:2	0.35	0.26	0.23	0.02	102
PTDPP-PyDPP:PC71BM	1:2	0.68	0.95	0.47	0.3	105
PTB7-Th:PTDPP-PyDPP	2.5:1	0.91	0.05	0.32	0.02	85

(b) Photovoltaic parameters of the PTDPP-PyDPP: $PC_{71}BM$ solar cells with different D:A ratio

donor:acceptor	D:A (w:w)	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)	Thickness (nm)
	1:1.5	0.66	0.96	0.45	0.28	98
PTDPP-PyDPP:PC71BM	1:2	0.68	0.95	0.47	0.3	105
	1:2.5	0.66	0.83	0.45	0.24	100

(c) Photovoltaic parameters of the PTB7-Th:PIID-PyDPP solar cells with different D:A ratios

donor:acceptor	D:A (w:w)	$V_{\rm oc}$ (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)	Thickness (nm)
	3:1	1.02	5.5	0.34	1.9	96
	2.5:1	1.02	5.9	0.39	2.3	85
PIB/-In:PIID-PyDPP	2:1	1.02	4.0	0.34	1.4	84
	1.5:1	1.01	3.1	0.31	1.0	80

(d) Photovoltaic parameters of the PBDTTS-FTAZ:PIID-PyDPP solar cells with different D:A ratios

donor:acceptor	D:A (w:w)	V _{oc} (V)	$J_{\rm sc}$ (mA/cm ²)	FF	PCE (%)	Thickness (nm)
	3:1	1.07	8.3	0.39	3.5	84
PBDTTS-FTAZ: PIID-PvDPP	2.5:1	1.07	9.1	0.43	4.2	85
	2:1	1.07	7.8	0.41	3.4	78

4. Energy loss (E_{loss}) characteristics

Active layer	PCE (%)	V _{oc} (V)	EQE _{max}	E _g (eV)	E_{loss} (eV)	Reference
J51:N2200	8.27	0.83	0.75	1.48	0.65	5
PTB7-Th:PNDIS-HD	7.73	0.81	0.85	1.59	0.78	6
PTB7-Th:P(NDI2DT-FT2)	6.71	0.81	0.66	1.59	0.78	7
PBDTTPD:PNDIT-HD	6.64	1.06	0.70	1.85	0.79	8
PBDT-TS1:PPDIODT	6.58	0.76	0.75	1.55	0.79	9
PBDTTT-C-T:30PDI	6.29	0.79	0.91	1.55	0.76	10
PTB7-Th:P-BNBP-fBT	6.26	1.07	0.60	1.58	0.51	11
PTB7-Th:PNDIT-HD	5.96	0.79	0.70	1.59	0.80	12
PBDTBDD-T:N2200	5.8	0.87	0.55	1.48	0.60	13
PTB7-Th:N2200	5.73	0.79	0.60	1.48	0.69	14
J51:P(IDT-NDI)	5.33	0.93	0.55	1.51	0.58	15
PTB7-Th: PNDI-TT- TVT(copolymer4)	5.27	0.79	0.61	1.52	0.73	16
PPDT2FBT:N2200	5.1	0.85	0.59	1.48	0.63	17
Ptb7-Th:P-BN-IID	4.95	0.92	0.53	1.59	0.67	18
PSEHTT:PNDIS-HD	4.81	0.76	0.61	1.65	0.89	19
TQ1:N2200	4.4	0.82	0.54	1.48	0.66	20
PTP8:N2200	4.35	0.98	0.46	1.48	0.50	21
Pil-2T-PS5:P(TP)	4.21	1.04	0.46	~1.65	0.61	22
TTV7:PC-NDI	3.68	0.88	0.40	~1.72	0.84	23
PTB7-Th:PDIC8-EB	3.58	0.70	0.49	1.59	0.89	24
PBDTTT-C-T:P(PDI-DTT)	3.45	0.75	0.43	1.46	0.71	25
PSEHTT:PNDIS-HD	3.26	0.76	0.47	1.65	0.89	26
PBDTTT-C-T:PNDIBTOV8	3.14	0.90	0.33	1.46	0.56	27
PTB7-Th:PQP	3.08	0.70	0.40	1.59	0.89	28
PDPP5T:PDPP2TzT	2.9	0.81	0.29	1.44	0.63	29
PTB7:N2200	2.66	0.80	0.27	1.44	0.64	30
PTB7:PCPDT-PDI	2.13	0.7	0.34	1.46	0.76	31

Table S2 PCE, V_{oc} , EQE_{max}, E_{g} and E_{loss} for various all-PSCs

PTB7-Th: PIID-PyDPP	2.3	1.02	0.27	1.59	0.57	This work
PBDTTS-FTAZ: PIID-PyDPP	4.2	1.07	0.58	1.69	0.62	This work

Fig. S3 (a) Plots of V_{oc} against E_g and (b) EQE_{max} against E_{loss} in various all-PSCs. The red line corresponds to $E_{loss} = 0.6$ eV.

5. Space charge limited current (SCLC) mobilities

Fig. S4 SCLC fitting curves of the PTB7-Th:PIID-PyDPP and PBDTTS-FTAZ:PIID-PyDPP blend films with the hole-only device structure of ITO/PEDOT:PSS/active layer/Au, and electron-only device structure of ITO/ZnO/active layer/LiF/Al.

6. EQE characteristics under bias light

Fig. S5 EQE curves of the (a) PTB7-Th:PIID-PyDPP and (b) PBDTTS-FTAZ:PIID-PyDPP solar cells with and without bias light (530 nm, 100 mW/cm²).

7. Time resolved photoluminescence (TRPL) parameters

Polymer	A_1	τ_1 (ps)	A_2	τ_2 (ps)		
PTB7-Th	1	138.7				
PBDTTS-FTAZ	1	310				
PIID-PyDPP	1	102				
PTB7-Th:PIID-PyDPP ^a	0.92	3.6	0.52	69.5		
PBDTTS-FTAZ:PIID-PyDPP a	0.40	8.7	0.75	70.0		
^{<i>a</i>} Bi-exponential fit: $I(t) = A_1 \exp(-t/\tau_1) + A_2 \exp(-t/\tau_2)$.						

Table S3 Amplitude (A) and lifetime (τ) of the neat polymer and blend films.

8. Absolute fluorescence quenching yield measurements

Polymer	fluorescence quantum yield (Φ)	exciton quenching efficiency (η)
PTB7-Th	1.53%	
PBDTTS-FTAZ	4.74%	
PIID-PyDPP	0.39%	
PTB7-Th:PIID-PyDPP	0.34%	
PBDTTS-FTAZ:PIID- PyDPP	0.38%	
η (PTB7-Th) ^{<i>a</i>}		>70%
η (PBDTTS-FTAZ) ^{<i>a</i>}		>91%

Table S4 Summary of absolute fluorescence quantum yield and quenching efficiency

^{*a*} η is the exciton quenching efficiency of the donor polymer in the blend films.

Absolute fluorescence quantum yield (Φ) is calculated by using the Equation (1),

$$\Phi = \frac{E_c - E_a}{L_a - L_c} \tag{1}$$

Where E_a is the integrated luminescence from the blank sample, E_c is the integrated luminescence from the samples with direct excitation, L_a is the integrated excitation profile from the blank sample, L_c is the integrated excitation profile when the sample is directly excited by the incident beam. PL quenching efficiency (η) is calculated by using the Equation (2),

$$\eta_{donor} > 1 - \frac{\Phi_{blend}}{\Phi_{donor} \times R_{donor}} \tag{2}$$

Where Φ_{blend} is the absolute fluorescence quantum yield of the blend film. Φ_{donor} is the absolute fluorescence quantum yield of the neat donor film. R_{donor} is the absorption contribution of the donor to the blend film at the excitation wavelength.

9. Internal quantum efficiency (IQE) parameters

Fig. S6 The optical parameters k and n curves of the PBDTTS-FTAZ:PIID-PyDPP blend.

Using the transfer matrix formalism (TMF), the fraction of absorbed photons in the active layer was calculated based on a device configuration of glass/SiO₂(20 nm)/ITO(170 nm)/ZnO(40 nm)/active layer (85 nm)/MoO₃(10 nm)/Ag(100 nm). The *n* and *k* values of the glass substrate, ITO, charge transporting layers and electrodes were included as input to simulate the absorption distribution in the all-PSC.

10. References

- 1. Z. Genene, J. Wang, X. Meng, W. Ma, X. Xu, R. Yang, W. Mammo and E. Wang, *Adv. Electron. Mater.*, 2016, **2**, 1600084.
- 2. H. Bürckstümmer, A. Weissenstein, D. Bialas and F. Würthner, J. Org. Chem., 2011, 76, 2426-2432.
- 3. B. Sun, W. Hong, Z. Yan, H. Aziz and Y. Li, Adv. Mater., 2014, 26, 2636-2642.
- 4. W. Sun, Z. Ma, D. Dang, W. Zhu, M. R. Andersson, F. Zhang and E. Wang, *J. Mater. Chem. A*, 2013, **1**, 11141-11144.

- 5. L. Gao, Z. G. Zhang, L. Xue, J. Min, J. Zhang, Z. Wei and Y. Li, *Adv. Mater.*, 2016, **28**, 1884-1890.
- 6. Y. J. Hwang, B. A. Courtright, A. S. Ferreira, S. H. Tolbert and S. A. Jenekhe, *Adv. Mater.*, 2015, **27**, 4578-4584.
- 7. J. W. Jung, J. W. Jo, C. C. Chueh, F. Liu, W. H. Jo, T. P. Russell and A. K. Y. Jen, *Adv. Mater.*, 2015, **27**, 3310-3317.
- 8. T. Kim, J.-H. Kim, T. E. Kang, C. Lee, H. Kang, M. Shin, C. Wang, B. Ma, U. Jeong and T.-S. Kim, *Nat. Commun.*, 2015, **6**, 8547.
- S. Li, H. Zhang, W. Zhao, L. Ye, H. Yao, B. Yang, S. Zhang and J. Hou, Adv. Energy Mater., 2015, 6, 1501991.
- 10. Y.-J. Hwang, T. Earmme, B. A. Courtright, F. N. Eberle and S. A. Jenekhe, *J. Am. Chem. Soc.*, 2015, **137**, 4424-4434.
- 11. X. Long, Z. Ding, C. Dou, J. Zhang, J. Liu and L. Wang, *Adv. Mater.*, 2016, **28**, 6504-6508.
- 12. C. Lee, H. Kang, W. Lee, T. Kim, K. H. Kim, H. Y. Woo, C. Wang and B. J. Kim, *Adv. Mater.*, 2015, **27**, 2466-2471.
- 13. L. Ye, X. Jiao, M. Zhou, S. Zhang, H. Yao, W. Zhao, A. Xia, H. Ade and J. Hou, *Adv. Mater.*, 2015, **27**, 6046-6054.
- 14. D. Mori, H. Benten, I. Okada, H. Ohkita and S. Ito, *Energy Environ. Sci.*, 2014, 7, 2939-2943.
- 15. L. Xue, Y. Yang, Z.-G. Zhang, X. Dong, L. Gao, H. Bin, J. Zhang, Y. Yang and Y. Li, *J. Mater. Chem. A*, 2016, **4**, 5810-5816.
- 16. X. Li, P. Sun, Y. Wang, H. Shan, J. Xu, C. You, Z.-x. Xu and Z.-K. Chen, *Polym. Chem.*, 2016, 7, 2230-2238.
- 17. H. Kang, M. A. Uddin, C. Lee, K.-H. Kim, T. L. Nguyen, W. Lee, Y. Li, C. Wang, H. Y. Woo and B. J. Kim, *J. Am. Chem. Soc.*, 2015, **137**, 2359-2365.
- 18. R. Zhao, C. Dou, Z. Xie, J. Liu and L. Wang, Angew. Chem., 2016, 128, 5399-5403.
- 19. T. Earmme, Y. J. Hwang, S. Subramaniyan and S. A. Jenekhe, *Adv. Mater.*, 2014, **26**, 6080-6085.
- 20. Y. Xia, C. Musumeci, J. Bergqvist, W. Ma, F. Gao, Z. Tang, S. Bai, Y. Jin, C. Zhu and R. Kroon, *J. Mater. Chem. A*, 2016, **4**, 3835-3843.
- 21. J. Yuan and W. Ma, J. Mater. Chem. A, 2015, 3, 7077-7085.
- 22. Y. Zhou, T. Kurosawa, W. Ma, Y. Guo, L. Fang, K. Vandewal, Y. Diao, C. Wang, Q. Yan and J. Reinspach, *Adv. Mater.*, 2014, **26**, 3767-3772.
- 23. E. Zhou, J. Cong, K. Hashimoto and K. Tajima, Adv. Mater., 2013, 25, 6991-6996.
- 24. S. Nam, S. G. Hahm, H. Han, J. Seo, C. Kim, H. Kim, S. R. Marder, M. Ree and Y. Kim, *ACS Sustainable Chem. Eng.*, 2016, **4**, 767-774.
- 25. P. Cheng, L. Ye, X. Zhao, J. Hou, Y. Li and X. Zhan, *Energy Environ. Sci.*, 2014, 7, 1351-1356.
- 26. T. Earmme, Y.-J. Hwang, N. M. Murari, S. Subramaniyan and S. A. Jenekhe, *J. Am. Chem. Soc.*, 2013, **135**, 14960-14963.
- 27. F. Liu, H. Li, Y. Wu, C. Gu and H. Fu, RSC Adv., 2015, 5, 92151-92158.
- 28. I. H. Jung, D. Zhao, J. Jang, W. Chen, E. S. Landry, L. Lu, D. V. Talapin and L. Yu, *Chem. Mater.*, 2015, **27**, 5941-5948.
- 29. W. Li, W. Roelofs, M. Turbiez, M. M. Wienk and R. A. Janssen, *Adv. Mater.*, 2014, **26**, 3304-3309.
- 30. N. Zhou, H. Lin, S. J. Lou, X. Yu, P. Guo, E. F. Manley, S. Loser, P. Hartnett, H. Huang and M. R. Wasielewski, *Adv. Energy Mater.*, 2014, **4**, 1300785.
- 31. B. Xiao, G. Ding, Z. a. Tan and E. Zhou, Polym. Chem., 2015, 6, 7594-7602.