[Supplementary Information]

Standout electrochemical performance of SnO₂ and Sn/SnO₂ nanoparticles

embedded in a KOH-activated carbonized porous aromatic framework

(PAF-1) matrix as the anode for lithium-ion batteries

Yan Dong,^a Saikat Das,^a Liangkui Zhu,^a Teng Ben^{a*} and Shilun Qiu^a

[*]^aDepartment of Chemistry, Jilin University, Changchun, China.

Fax: (+86) 431-85168298

E-mail: tben@jlu.edu.cn

Fig. S1 Cycling performance of PAF-1 showing the charge/discharge capacities at a current density of 200 mA g⁻¹ for 200 cycles (the electrodes were prepared by mixing 80 wt% active material and 20 wt% polyvinylidene fluoride (PVDF) binder to form an electrode slurry). The reversible capacity after 200 cycles is 10 mA h g⁻¹. It can be observed that the reversible capacity increases from 2^{nd} to 100^{th} cycles and reach a stable value of about 10 mA h g⁻¹ after 100 cycles. This is due to the high microporosity of PAF-1 (reaction between PAF-1 and electrolyte occurs cycle by cycle until the pore is filled with electrolyte).

Fig. S2 PXRD pattern of K-PAF-1. The broad peak at 24.0° is ascribed to the (002) diffraction of carbon. The broad peak indicates that K-PAF-1 is essentially amorphous.

Fig. S3 HRTEM image of K-PAF-1. The high magnification TEM image shows the worm-like structure of K-PAF-1. This is consistent with the result from PXRD analysis.

Fig. S4 TGA curve of K-PAF-1. TGA was accomplished under dry air from 50 to 800 °C at the heating rate of 10 °C min⁻¹.

Fig. S5 SEM and corresponding mapping images of SnO₂@K-PAF-1-550 (A, B), SnO₂@K-PAF-1-550-50 (C, D), SnO₂@K-PAF-1-550-25 (E, F) and SnO₂@K-PAF-1-550-10 (G, H). It can be seen that SnO₂ disperses homogeneously in carbon matrix.

Fig. S6 (A) N_2 sorption (solid symbols, adsorption; open symbols, desorption) and (B) corresponding pore size distribution of K-PAF-1.

Fig. S7 CV profiles of K-PAF-1 during the first five cycles at a scanning rate of 0.2 mV s⁻¹.

Fig. S8 Cycling performance of commercial SnO_2 showing the charge/discharge capacities at a current density of 200 mA g⁻¹ for 50 cycles. The reversible capacity after 50 cycles is 52 mA h g⁻¹.

Fig. S9 Cycling performance of K-PAF-1 showing the charge/discharge capacities at a current density of 1000 mA g^{-1} for 30 cycles. The discharge and charge capacities are 1042 and 461 mA h g^{-1} for the first cycle. The reversible capacity after 30 cycles is 281 mA h g^{-1} .

Fig. S10 Electrochemical impedance spectra of K-PAF-1 in the frequency range 100 kHz–0.01 Hz. The charge transfer resistance (R_{ct}) is 156 Ω .

Fig. S11 (A) N_2 sorption (solid symbols, adsorption; open symbols, desorption) and (B) corresponding pore size distribution of $SnO_x@K-PAF-1-650-25$ and $SnO_x@K-PAF-1-750-25$.

Fig. S12 SEM and corresponding mapping images of $SnO_x@K-PAF-1-650-25$ (A, B) and $SnO_x@K-PAF-1-750-25$ (C, D). It can be seen that Sn and SnO_2 disperse homogeneously in carbon matrix.

	SnO ₂ (wt%)	Sn (wt%)	K-PAF-1 (wt%)	Theoretical capacity (mA h g ⁻¹)	Experimental Capacity (mA h g ⁻¹)
SnO ₂ @K-PAF-1-550	74.5	-	25.5	701	793
SnO ₂ @K-PAF-1-550-50	46.5	-	53.5	611	661
SnO ₂ @K-PAF-1-550-25	21.6	-	78.4	531	784
SnO _x @K-PAF-1-650-25	3.5	21.9	74.6	588	887
SnO _x @K-PAF-1-750-25	0.9	28.5	70.6	615	870
SnO ₂ @K-PAF-1-550-10	17.0	-	83.0	516	698

 Table S1 Mass ratio and capacity of all composites.