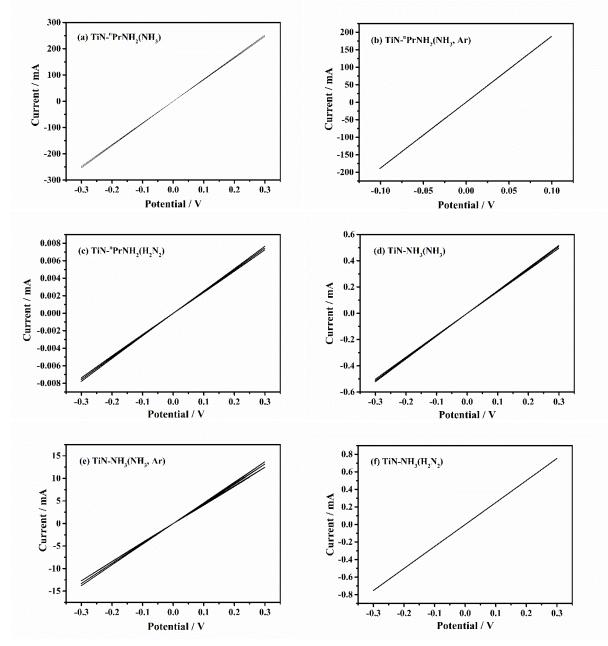
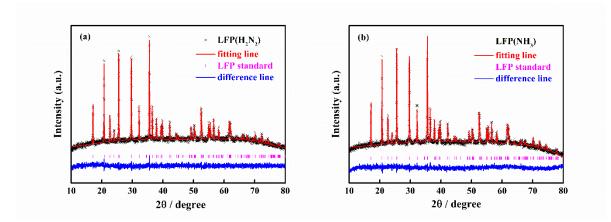

Supplementary information: A sol-gel route to titanium nitride conductive coatings on battery materials and performance of TiN-coated LiFePO₄

Min Zhang, Nuria Garcia-Araez, Andrew L. Hector and John R. Owen


Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, UK


Fig. S1 Rietveld fits to the XRD patterns of (a) TiN-ⁿPrNH₂(NH₃) ($R_{WP} = 9.44\%$ and $R_p = 7.29\%$), (b) TiN-ⁿPrNH₂(NH₃, Ar) ($R_{WP} = 9.92\%$ and $R_p = 7.77\%$), (c) TiN-ⁿPrNH₂(H₂N₂) ($R_{WP} = 8.44\%$ and $R_p = 6.37\%$), (d) TiN-NH₃(NH₃) ($R_{WP} = 9.65\%$ and $R_p = 7.71\%$), (e) TiN-NH₃(NH₃, Ar) ($R_{WP} = 9.93\%$ and $R_p = 7.90\%$) and (f) TiN-NH₃(H₂N₂) ($R_{WP} = 18.88\%$ and $R_p = 14.47\%$) samples. The data points and Rietveld fits are overlaid in black crosses and red lines, respectively. The difference plots are shown in blue. The pink tick marks represent the allowed reflection positions for TiN with space group $Fm\overline{3}m$.

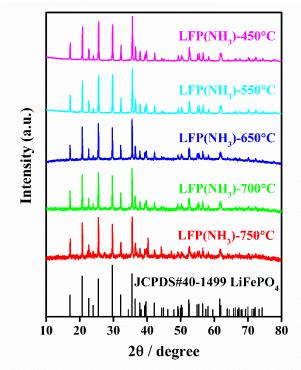

Fig. S2 TEM images (scale bar = 50 nm) of (a) $TiN^{-n}PrNH_2(NH_3)$, (b) $TiN^{-n}PrNH_2(H_2N_2)$ and (c) $TiN^{-}NH_3(NH_3, Ar)$ samples.

Fig. S3 Current-potential plots for dry (a) $TiN^{-n}PrNH_2(NH_3)$, (b) $TiN^{-n}PrNH_2(NH_3, Ar)$, (c) $TiN^{-n}PrNH_2(H_2N_2)$, (d) $TiN-NH_3(NH_3)$, (e) $TiN-NH_3(NH_3, Ar)$ and (f) $TiN-NH_3(H_2N_2)$ samples at scanning rate of 20 mV s⁻¹.

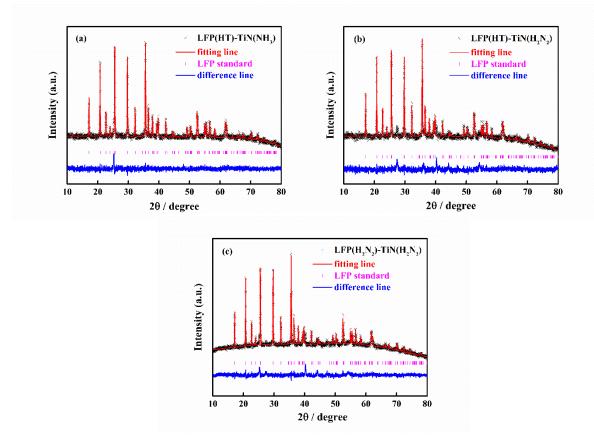

Fig. S4 Rietveld fits to the XRD patterns of (a) LFP(H_2N_2) ($R_{WP} = 2.29\%$ and $R_p = 1.82\%$) and (b) LFP(NH_3) ($R_{WP} = 1.96\%$ and $R_p = 1.55\%$) samples. The data points and Rietveld fits are overlaid in black crosses and red lines, respectively. The difference plots are shown in blue. The pink tick marks represent the allowed reflection positions for LiFePO₄ with space group *Pnma*.

Fig. S5 XRD patterns of LFP(NH₃)-450°C, LFP(NH₃)-550°C, LFP(NH₃)-650°C, LFP(NH₃)-700°C and LFP(NH₃)-750°C samples prepared by hydrothermal method and heated under NH₃ at the temperature of 450 °C to 750 °C. The black stick pattern denotes the literature positions and intensities of LFPO₄ reflections.

Table S1 Lattice parameters obtained from the Rietveld fits of XRD patterns for LFP(NH₃)-450°C, LFP(NH₃)-550°C, LFP(NH₃)-650°C, LFP(NH₃)-700°C, LFP(NH₃)-750°C and LFP(H₂N₂)samples.

Sample	a (Å)	b (Å)	c (Å)
LFP(NH₃)-450°C	10.3232(2)	6.0015(1)	4.6890(8)
LFP(NH₃)-550°C	10.3216(1)	6.0022(9)	4.6904(8)
LFP(NH₃)-650°C	10.3254(2)	6.0057(1)	4.6938(1)
LFP(NH₃)-700°C	10.3233(3)	6.0061(2)	4.6930(2)
LFP(NH₃)-750°C	10.3246(6)	6.0082(3)	4.6958(3)
LFP(H ₂ N ₂)	10.3274(2)	6.0060(1)	4.6919(1)

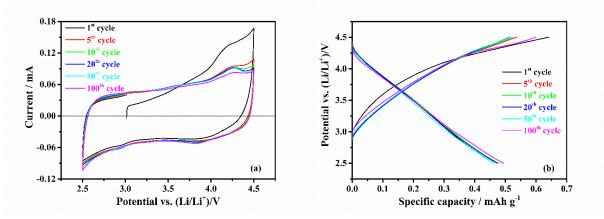


Fig. S6 Rietveld fits to the XRD patterns of (a) LFP(HT)-TiN(NH₃) (R_{WP} = 2.45% and R_p = 1.86%), (b) LFP(HT)-TiN(H₂N₂) (R_{WP} = 2.69% and R_p = 2.03%) and (c) LFP(H₂N₂)-TiN(H₂N₂) (R_{WP} = 2.36% and R_p = 1.73%) samples. The data points and Rietveld fits are overlaid in black crosses and red lines, respectively. The difference plots are shown in blue. The pink tick marks represent the allowed reflection positions for LiFePO₄ with space group *Pnma*.

Table S2 Lattice parameters and crystallite sizes of LiFePO4 obtained from the Rietveld fits of XRD patterns for
LFP(HT)-TiN(NH ₃), LFP(HT)-TiN(H ₂ N ₂), LFP(H ₂ N ₂)-TiN(NH ₃) and LFP(H ₂ N ₂)-TiN(H ₂ N ₂) samples.

Comula			LiFePO ₄	
Sample	a (Å)	b (Å)	c (Å)	Crystallite size (nm)
LFP(HT)-TiN(NH₃)	10.3267(3)	6.0052(2)	4.6939(2)	123(2)
LFP(HT)-TiN(H ₂ N ₂)	10.3195(4)	6.0009(2)	4.6951(2)	173(5)
LFP(H ₂ N ₂)-TiN(NH ₃)	10.3249(1)	6.00473(4)	4.69113(3)	153(1)
$LFP(H_2N_2)$ -TiN(H_2N_2)	10.3168(3)	6.0021(1)	4.6938(1)	175(3)
14000 -				
12000 - 0	D			
10000 - Ti	Í.			
8000 -				
6000 -				
4000 -			Fe	
2000 - N Fe	N	ті Лті		
o fix man	·	\rightarrow		
0 1 klm - 6 - C	2 3	4 5 keV	67	8 9 10

Fig. S8 (a) Cyclic voltammetry plots of TiN-ⁿPrNH₂(NH₃)/Li half cell at 20 mV s⁻¹ over the range of 1 to 5 V at room temperature; (b) The voltage profile against specific capacity of TiN-ⁿPrNH₂(NH₃)/Li half cell under galvanostatic cycling between 2.5 and 4.5 V for 100 cycles.