Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Small molecule carbazole based diketopyrrolopyrroles with tetracyanobutadiene acceptor unit as Non-Fullerene acceptor for Bulk Heterojunction Organic Solar Cells

Yuvraj Patil^a, Rajneesh Misra^{a*}, M. L. Keshtov^b, Ganesh D. Sharma^{c*}

^aDepartment of Chemistry
Indian Institute of Technology, Indore (MP) 453552, India
^bInstitute of Organoelement Compounds of the Russian Academy of Sciences, Vavilova St., 28, 119991 Moscow, Russian Federation
^cDepartment of Physics, The LNM Institute of Information Technology (Deemed University), Jamdoli, Jaipur (Raj.), 302031, India

Table of ContentsPage No.
Experimental part
Table S1 Photovoltaic parameters for the OSCs based on SVA treated P:DPP8 active layersS2
Table S2 Photovoltaic parameters for the OSCs based on SVA treated P:DPP7 active layersS3
Fig. S1 Normalized absorption spectra of SVA DPP7 and DPP8 thin filmS3
Fig. S2 Normalized absorption spectra of D-A copolymer PS4

Experimental details

Device fabrication and characterization

The chemicals were used as received unless otherwise indicated. The PSCs were fabricated with a configuration of ITO/ PEDOT:PSS (40 nm)/P:DPP7 of DPP8/PFN/Al. A thin layer of PEDOT:PSS was deposited through spin-coating on pre-cleaned ITO-coated glass substrate from a PEDOT:PSS aqueous solution (Baytron P VP AI 4083) at 2000 rpm and dried subsequently at 120 °C for 15 min in air. The active blend layer was spin-coated from THF solution containing a blend of P and DPP7 or DPP8 onto the PEDOT:PSS layer. The optimized conditions are with a spin rate of 2000 rpm and with a blend THF solution containing weight ratio of 1: 2 between the

donor and acceptor with total concentration 18 mg/mL for both **DPP7** and **DPP8** acceptors. For solvent vapour annealing (SVA) treatment, the films were subjected to chloroform vapor, for a period of 60 s in a sealed petri dish. Then methanol solution of PFN at a concentration of 1.0 mg/mL was deposited on the top the active layer at 3000 rpm for 30 s to afford a thickness of 15 nm. Finally, top Al electrode was deposited in vacuum onto the cathode buffer layer at a pressure of $\approx 1.0 \times 10^{-5}$ Pa. The active area of the device was 10 mm². We have fabricated four devices in one substrate. The current-voltage (*J*–*V*) characteristics of the PSCs were measured on a computer controlled Keithley 2450 Source meter. Solar Simulator with a 450 W xenon lamp and an air mass (AM) 1.5 filter was used as the light source. The light intensity was kept constant at 100 mW/cm2. The IPCE of the devices was measured at illuminating the device through the light source and monochromator and the resulting current was measured using a Keithley electrometer under short circuit condition.

Device No	$J_{\rm sc}~({\rm mA/cm^2})$	$V_{oc}(V)$	FF	PCE (%)
1	13.85	0.91	0.56	7.06
2	14.07	0.89	0.57	7.14
3	13.49	0.91	0.58	7.12
4 (best)	13.78	0.90	0.58	7.19
5	14.14	0.91	0.55	7.08
6	13.48	0.90	0.58	7.04
7	13.28	0.91	0.58	7.01
8	13.78	0.90	0.57	7.07

Table S1 Photovoltaic parameters for the OSCs based on SVA treated P:DPP8 active layers.

Device No	$J_{\rm sc}~({\rm mA/cm^2})$	V _{oc} (V)	FF	PCE (%)
1	10.82	0.92	0.48	4.78
2	10.16	0.94	0.50	4.75
3	10.73	0.92	0.47	4.64
4 (best)	10.56	0.94	0.49	4.86
5	10.56	0.93	0.48	4.69
6	10.06	0.92	0.50	4.63
7	10.58	0.92	0.48	4.68
8	10.66	0.95	0.47	4.76

 Table S2 Photovoltaic parameters for the OSCs based on SVA treated P:DPP7 active layers.

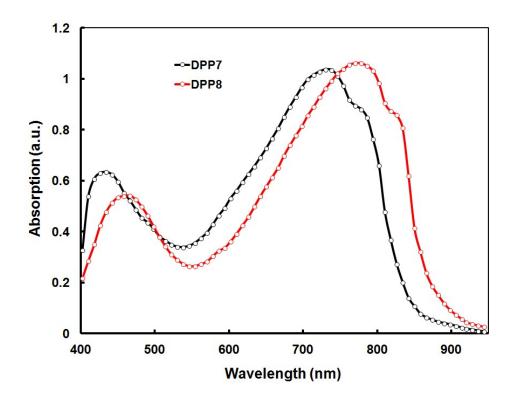


Fig. S1 Normalized absorption spectra of SVA DPP7 and DPP8 thin film.

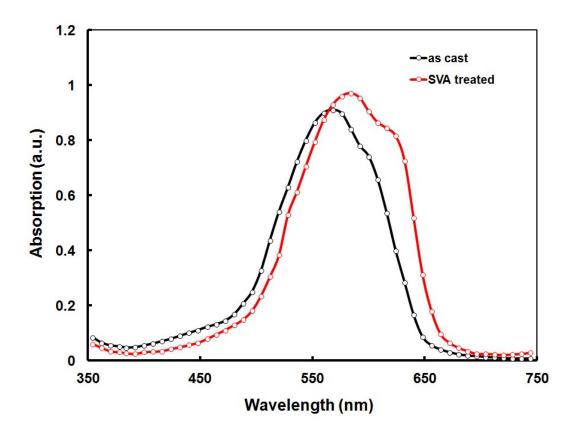


Fig. S2 Normalized absorption spectra of as cast the SVA treated D-A copolymer P thin films.