Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting information

Strongly Coupled MoS₂ Nanoflake-Carbon Nanotube Nanocomposite as an Excellent Electrocatalyst for Hydrogen Evolution Reaction

Haoliang Huang, Weihao Huang, Zhuohong Yang, Junying Huang, Jiadong Lin, Weipeng Liu* and Yingju Liu*

Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China. E-mail: weipeng liu@scau.edu.cn; liuyingju@hotmail.com

Figure S1. N₂ absorption-desorption isotherm of strongly coupled MoS₂-CNT nanocomposite.

Figure S2. MoS₂ aggregates synthesized without CNT.

Figure S3. Absorption pore size distributions using DFT model of CNT and strongly coupled MoS_2 -CNT.

Figure S4. XRD patterns of MoS₂/CNT-60, MoS₂/CNT-70 and MoS₂/CNT-90.

Figure S5. Core-level XPS spectra of pristine MoS₂ crystal (Aladdin, 99.5% metal basis) in the region of (A) S 2p and (B) Mo 3d.

Figure S6. TEM image of MoO_x-CNT synthesized without thiourea.

Figure S7. Individual Tafel plots of as-prepared samples (MoS₂-CNT, MoS₂/CNT-60, MoS₂/CNT-70, MoS₂/CNT-90 and MoS₂), pristine MoS₂ crystal and standard Pt wire, and their measurements for Tafel slope and the length of Tafel region.

Figure S8. Nyquist plots of MoS₂ aggregates at overpotential of 250 mV.

Figure S9. Cyclic voltammogram curves of (A) MoS₂-CNT, (B) MoS₂/CNT-60, (C) MoS₂/CNT-70 and (D) MoS₂/CNT-90 in the region of 0.1-0.3 V *vs*. RHE, and their differences in current density variation ($\Delta j = j_a - j_c$) at potential of 0.2 V *vs*. RHE plotted against scan rate from 20 to 200 mV s⁻¹.

Catalyst	Onset η (η ₀ , mV)	Current density (j, mA cm ⁻ ²)	Correspo- nding η (η _j , mV)	Electrochemical double layered capacitance (C _{dl} , mF cm ⁻²)	R _{CT} (Ω)	Ref.
MoS ₂ @OMC	120	-10	178~192	N.A.	~900 @η=100 mV	[1]
MoS ₂ /rGO hydrogel	125	-12	200	29.6	N.A.	[2]
MoS ₂ /NCNFs	N.A.	-65.6	200	22.7	N.A.	[3]
MoS ₂ NPs/RGO	~100	N.A.	N.A.	N.A.	~250 @η=120 mV	[4]
MoS ₂ nanoparticles on mesoporous graphene foams	100	-100	200	N.A.	33 @η=150 mV	[5]
MoS ₂ NSs/RGO	~140	-23	200	N.A.	155 @η=170 mV	[6]
MoS ₂ ⊥RGO	N.A.	-10	172	6.045	N.A	[7]
MoS _x on crumpled graphene balls	130	-220	300	N.A.	N.A.	[8]
MoS _x /N-doped CNT	~75	-10	~110	N.A.	~150 @ q =200 mV	[9]
MoS ₂ /VGNS	160	N.A.	N.A.	7.96	39.2 @open circuit	[10]
MoS ₂ /CA	140	-9.68	200	N.A.	N.A.	[11]
pBC-N/MoS ₂	108	-8.7	200	16.5	N.A.	[12]
C/MoS ₂ @G	165	-100	~360	N.A.	13.2 @ q =300 mV	[13]

Table S1. Comparison of HER performance of strongly coupled MoS_2 -CNTnanocomposite with other MoS_2 /nanocarbons electrocatalysts.

290

208

31

12

@**η**=250 mV

This

work

-850

-15

~100

Strongly coupled MoS₂-

CNT

References

- [1] B. Seo, G. Y. Jung, Y. J. Sa, H. Y. Jeong, J. Y. Cheon, J. H. Lee, H. Y. Kim, J. C. Kim, H. S. Shin, S. K. Kwak and S. H. Joo, *ACS nano*, 2015, 9, 3728-3739.
- [2] J. Zhang, L. Zhao, A. Liu, X. Li, H. Wu and C. Lu, *Electrochim. Acta*, 2015, **182**, 652-658.
- [3] Y. Guo, X. Zhang, X. Zhang and T. You, J. Mater. Chem. A, 2015, 3, 15927-15934.
- [4] Y. Li, H. Wang, L. Xie, Y. Liang, G. Hong and H. Dai, J. Am. Chem. Soc., 2011, 133, 7296-7299.
- [5] L. Liao, J. Zhu, X. Bian, L. Zhu, M. D. Scanlon, H. H. Girault and B. Liu, *Adv. Funct. Mater.*, 2013, 23, 5326-5333.
- [6] X. Zheng, J. Xu, K. Yan, H. Wang, Z. Wang and S. Yang, *Chem. Mater.*, 2014, 26, 2344-2353.
- [7] Z. H. Deng, L. Li, W. Ding, K. Xiong and Z. D. Wei, Chem. Commun., 2015, 51, 1893-1896.
- [8] A. J. Smith, Y.-H. Chang, K. Raidongia, T.-Y. Chen, L.-J. Li and J. Huang, Adv. Energy Mater., 2014, 4, 1400398.
- [9] D. J. Li, U. N. Maiti, J. Lim, D. S. Choi, W. J. Lee, Y. Oh, G. Y. Lee and S. O. Kim, *Nano Lett.*, 2014, 14, 1228-1233.
- [10] Y. Wang, B. Chen, D. H. Seo, Z. J. Han, J. I. Wong, K. Ostrikov, H. Zhang and H. Y. Yang, NPG Asia Materials, 2016, 8, e268.
- [11] Y. Zhang, L. Zuo, Y. Huang, L. Zhang, F. Lai, W. Fan and T. Liu, ACS Sustainable Chem. Eng., 2015, 3, 3140-3148.
- [12] F. Lai, Y. E. Miao, Y. Huang, Y. Zhang and T. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 3558-3566.
- [13] Y. Li, J. Wang, X. Tian, L. Ma, C. Dai, C. Yang and Z. Zhou, *Nanoscale*, 2016, 8, 1676-1683.