Supplementary Information (ESI[†])

Efficient Molecular Solar Cells Processed from Green Solvent Mixtures†

Mahmoud E. Farahat, abc Packiyaraj Perumal, ad Widhya Budiawan, abe Yang-Fang Chen, d Chih-Hao

Lee,*e and Chih-Wei Chu*b,f

^aNanoscience and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taiwan

^bResearch Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan; E-mail: gchu@gate.sinica.edu.tw

^cCentral Metallurgical Research and Development Institute(CMRDI), P.O. Box: 87, Helwan, Cairo 11421, Egypt

^dDepartment of Physics, National Taiwan University, Taipei 106, Taiwan

^eDepartment of Engineering and System Science, National Tsing-Hua University, Hsinchu 30013, Taiwan; E-mail: <u>chlee@mx.nthu.edu.tw</u>

^fCollege of Engineering, Chang Gung University, Tao-Yuan 333, Taiwan

Solvent system	Blend system	J _{sc}	Voc	FF	PCE	Reference
		[mA cm ⁻²]	[V]	[%]	[%]	
Benzaldehyde:mesitylene 80:20	N(Ph-2T-DCN- Et)/PC ₇₁ BM	8.37	0.96	46.68	3.75	[1]
2-MeTHF	X2:PC ₆₁ BC ₈	12.30	0.72	55.00	5.10	[2]
THF with additive	SM:PC ₇₁ BM	11.23	0.91	48.00	4.96	[3]
Tol with SVA ^(a)	SMPV1:PC71BM	12.55	0.89	63.03	7.04	Our work [4]
CPME:Tol (60:40)	SMPV1:PC ₆₁ BM	12.72	0.95	67.03	8.10	This study

 Table S1. Highest reported photovoltaic characteristics obtained using various halogen-free
 solvents for small-molecule blend systems

^(a) SVA: Solvent Vapor Annealing

Fig. S1 Solubility test: Photograph of three fullerene derivatives in CPME (10 mg mL⁻¹); stirred for 3 h at 60 °C.

Fig. S2 and **Table S2** present the photovoltaic characteristics of devices fabricated from SMPV1:ICBA processed using CPME alone and CPME:Tol solvent mixtures with various Tol contents. The device performances displayed here are the best obtained after optimization of the thicknesses.

Fig. S3 J-V photovoltaic characteristics of an SMPV1:PC₆₁BM device processed using Tol alone and without TA.

Fig. S4 IQE of SMPV1:PC₆₁BM devices prepared using green solvent mixtures with various Tol contents.

Fig. S5 XRD profiles of SMPV1:PC $_{61}$ BM active layers prepared using green solvent mixtures with various Tol contents.

Fig. S6 X-ray reflectivity profiles of SMPV1:PC₆₁BM active layers processed from CPME alone and from the 60:40 green solvent mixture. Arrows indicate the (100), (200), and (300) diffraction peaks of the stacking lattice spacing of SMPV1 crystallinity. The reflectivity profile with CPME only (red) has been shifted for clarity.

Fig. S7. PL spectra, measured using light from a green laser (532 nm), of neat SMPV1 and SMPV1:PC₆₁BM films prepared using different volume ratios of CPME and Tol.

SMPV1 Conc. [mg mL ⁻¹]	J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
10	10.30	0.94	65.59	6.35
15	11.96	0.96	60.97	7.00
20	11.37	0.96	57.90	6.32

Fig. S8 and **Table S4** present the effect of various SMPV1 concentrations on the J-V photovoltaic characteristics of SMPV1:PC₆₁BM films at a blend ratio of 1:0.75. The SMPV1:PC₆₁BM blends were cast from the 60:40 green solvent mixture and were not subjected to TA. The device performances presented here are the best obtained after optimization of thicknesses.

Annealing duration	J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
Without TA	11.96	0.95	60.97	7.00
5 min	12.44	0.95	63.67	7.53
10 min	12.72	0.95	67.03	8.10
15 min	12.22	0.94	64.51	7.41
20 min	11.45	0.95	64.26	6.99

Fig. S9 and **Table S5** present the effect of the TA duration on the J-V photovoltaic characteristics of devices fabricated from SMPV1:PC₆₁BM blends at the optimized blend ratio (1:0.75) and SMPV1 concentration (15 mg mL⁻¹). The SMPV1:PC₆₁BM blends were cast from the 60:40 green solvent mixture and then thermally annealed at 80 °C for various durations. The device performances presented here are the best obtained after optimization of thicknesses.

J _{sc} [mA cm ⁻²]	V _{oc} [V]	FF [%]	PCE [%]
12.68	0.95	65.17	7.85
12.72	0.95	67.03	8.10
12.15	0.94	64.79	7.40
	J _{sc} [mA cm ⁻²] 12.68 12.72 12.15	J_{sc} V_{oc} $[mA cm^{-2}]$ $[V]$ 12.680.9512.720.9512.150.94	J_{sc} V_{oc} FF[mA cm^{-2}][V][%]12.680.9565.1712.720.9567.0312.150.9464.79

Fig. S10 and **Table S6** present the effect of various $PC_{61}BM$ ratios on the *J*–*V* photovoltaic characteristics of SMPV1:PC₆₁BM blends prepared at the optimized SMPV1 concentration (15 mg mL⁻¹). The SMPV1:PC₆₁BM blends were cast from the 60:40 green solvent mixture and then thermally annealed at 80 °C for various durations. The device performances presented here are the best obtained after optimization of thicknesses.

Fig. S11 IQE of SMPV1:PC₆₁BM devices prepared using TA.

Fig. S12 UV–Vis absorption spectra of active layers processed from CPME and CPME:Tol solvent mixtures with various Tol contents: (a) thermally annealed at 80 °C for 10 min; (b) without thermal annealing.

Fig. S13 XRD profiles of SMPV1:PC₆₁BM active layers processed from the 60:40 green solvent mixture and then thermally annealed at various annealing temperatures for 10 min.

Fig. S14 (a, c) PL and (b) corresponding TRPL spectra of SMPV1:PC₆₁BM active layers, measured under excitation with light from (a, b) 266- and (c) 532-nm lasers; the films had been processed from the 60:40 green solvent mixture and then thermally annealed at various annealing temperatures for 10 min.

Fig. S15 (a) electron- and (b) hole-only devices of SMPV1:PC₆₁BM active layers prepared using green solvent mixtures with various Tol contents.

Table S7 electron- and hole-only mobilities of SMPV1:PC $_{61}$ BM active layers prepared usinggreen solvent mixtures with various Tol contents.

CPME:Toluene [volume ratio]	$\begin{bmatrix} \mu_e \\ [\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1}] \end{bmatrix}$	$\frac{\mu_h}{[\rm cm^2V^{-1}s^{-1}]}$	μ_e/μ_h
CPME	3.22 x 10 ⁻⁵	1.08 x 10 ⁻⁵	2.98
90:10	4.61 x 10 ⁻⁵	2.18 x 10 ⁻⁵	2.12
80:20	6.38 x 10 ⁻⁵	3.64 x 10 ⁻⁵	1.75
70:30	9.22 x 10 ⁻⁵	7.57 x 10 ⁻⁵	1.21
60:40	2.15 x 10 ⁻⁴	1.89 x 10 ⁻⁴	1.13
50:50	1.31 x 10 ⁻⁴	1.61 x 10 ⁻⁴	0.81

Fig. S16 (a) electron- and (b) hole-only devices of SMPV1:PC₆₁BM active layers processed from the 60:40 green solvent mixture and then thermally annealed at various annealing temperatures for 10 min.

Table S8 electron- and hole-only mobilities of SMPV1:PC₆₁BM active layers processed from the 60:40 green solvent mixture and then thermally annealed at various annealing temperatures for 10 min.

Temperature	$\frac{\mu_e}{[\mathrm{cm}^2\mathrm{V}^{-1}\mathrm{s}^{-1}]}$	$\begin{bmatrix} \mu_h \\ [\mathrm{cm}^2 \mathrm{V}^{-1} \mathrm{s}^{-1}] \end{bmatrix}$	μ_e/μ_h
without TA	2.15 x 10 ⁻⁴	1.89 x 10 ⁻⁴	1.13
60 °C	2.63 x 10 ⁻⁴	2.54 x 10 ⁻⁴	1.03
80 °C	3.81 x 10 ⁻⁴	3.83 x 10 ⁻⁴	0.99
100 °C	2.36 x 10 ⁻⁴	2.57 x 10 ⁻⁴	0.91
120 °C	8.52 x 10 ⁻⁵	9.71 x 10 ⁻⁵	0.87

Supporting References

- I. Burgués-Ceballos, F. Machui, J. Min, T. Ameri, M. M. Voigt, Y. N. Luponosov, S. A. Ponomarenko, P. D. Lacharmoise, M. Campoy-Quiles and C. J. Brabec, *Adv. Funct. Mater.*, 2014, 24, 1449–1457.
- 2. X. Chen, X. Liu, M. A. Burgers, Y. Huang and G. C. Bazan, *Angew. Chem., Int. Ed.*, 2014, **53**, 14378–14381.
- 3. M. Singh, R. Kurchania, J. A. Mikroyannidis, S. S. Sharma and G. D. Sharma, *J. Mater. Chem. A*, 2013, 1, 2297–2306.
- 4. M. E. Farahat, C.-S. Tsao, Y.-C. Huang, S.-H. Chang, W. Budiawan, C.-G. Wu and C. W. Chu, J. *Mater. Chem. A*, 2016, DOI: 10.1039/c6ta01368f