Electronic Supporting Information

Demonstration of thermally assisted diffusion in aged organic solar cells by a combination of electronic and mechanical characterisation techniques

by

W. Greenbank, N. Rolston, E. Destouesse, G. Wantz, L. Hirsch, R. Dauskardt and S. Chambon*

*sylvain.chambon@ims-bordeaux.fr

Table S1: Initial device parameter values (PCE, J_{SC}, V_{OC} and FF) for the inverted PCDTBT:PC71BM OPV devices.Uncertainties represent one standard deviation across 12 devices.

HTL/Metal	PCE	J _{sc} (mA cm⁻²)	<i>V_{oc}</i> (mV)	Fill factor
MoO ₃ /Al	5.16±0.13%	10.34±0.14	0.889±0.005	0.56±0.01
MoO ₃ /Ag	5.02±0.09%	9.70±0.17	0.890±0.004	0.58±0.01

Table S2: The optimised device parameter values (PCE, J_{SC}, V_{OC} and FF) for OPV devices fabricated in Greenbank, et al., Appl. Phys. Lett., 2015, **107**, 263301. Note that the samples containing WO₃ HTLs required one hour of thermal annealing (1h at 85°C) in order to reach optimal performance. Uncertainties represent one standard deviation across 16 devices.

HTL/Metal	PCE	J _{sc} (mA cm⁻²)	V _{oc} (mV)	Fill factor	J _{sc} extracted from EQE (mA cm⁻²)
MoO ₃ /Al	3.21±0.13%	11.77±0.45	0.504±0.006	0.54±0.01	10.1
WO ₃ /Al	3.54±0.09%	10.43±0.33	0.530±0.005	0.64±0.01	9.1
MoO ₃ /Ag	3.18±0.14%	11.62±0.41	0.509±0.004	0.54±0.01	10.4
WO ₃ /Ag	3.32±0.11%	10.40±0.37	0.534±0.005	0.60±0.01	9.0

Figure S1: The evolution of the PCE (a), J_{sc} (b), the V_{oc} (c), and the fill factor (d) of the PCDTBT:PC₇₁BM inverted OPV devices with thermal ageing in the dark in an inert atmosphere. The devices have MoO₃ HTLs and either aluminium or silver top electrodes. The uncertainties represent one standard deviation when averaged across 12 devices.

Figure S2: EQE spectra of P3HT:PCBM organic solar cells with different combination of top electrode (MoO_3/Ag , MoO_3/AI , WO_3/Ag and WO_3/AI).

Figure S3: Photographs of fractured samples from each top electrode/HTL material combination that have been thermally aged for between 0 and 3 weeks at 85°C in the dark under an inert atmosphere. In each image, the "metal side" fractured half is shown on the left, and the "ZnO side" half on the right. A sample that fractures in the BHJ exhibits purple colouration of both halves, while those that fracture at the HTL/BHJ interface only exhibit purple colouration on the ZnO side.

Figure S4: The XPS survey scans measured from the fractured unaged Al/MoO₃ sample. The metal side is shown on the left and the ZnO side on the right.

Figure S5: The XPS survey scans measured from the fractured unaged AI/WO_3 sample. The metal side is shown on the left and the ZnO side on the right.

Figure S6: The XPS survey scans measured from the fractured unaged Ag/MoO₃ sample. The metal side is shown on the left and the ZnO side on the right.

Figure S7: The XPS survey scans measured from the fractured unaged Ag/WO_3 sample. The metal side is shown on the left and the ZnO side on the right.

Figure S8: The XPS survey scans measured from the fractured Ag/MoO₃ sample that was aged one week. The metal side is shown on the left and the ZnO side on the right.

Figure S9: The XPS survey scans measured from the fractured Ag/WO₃ sample that was aged one week. The metal side is shown on the left and the ZnO side on the right.

Figure S10: AFM topography data obtained from the fractured silver-containing samples that underwent XPS depth profiling. The RMS roughness (R_{RMS}) values are superimposed on the micrographs, indicating only minor changes in roughness occur with thermal ageing.