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Figure S1. The daily humidity condition of Hong Kong during our perovskite degradation 

experiments. The data were downloaded from the Hong Kong Observatory website.
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Figure S2. Performance degradation of (a) MAPbI3 and (b) FAPbI3 PVSCs devices during the 

“dark stability” evaluation period of up to 31 days. Here the devices were kept in a dark dry box 

(~ 20% R.H.)and measured each day under the ambient condition (~ 70% R.H.).
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Figure S3. Normalized photovoltaic parameters (a) Voc, (b) Jsc and (c) ff variation during the dark 

stability evaluation period. Here the devices were kept in a dark dry box and measured each day 

under the ambient condition.
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Figure S4. Time-resolved XRD patterns of fresh prepared MAPbI3 films exposed in the ambient 

condition for up to approximately a month. The films were measured after 0, 1 day, 1, 2 , 3, 4 

weeks of exposure to the ambient condition. Peaks labeled with “□” suggest the perovskite phase. 

The peaks labeled with “※” correspond to monohydrate CH3NH3PbI3·H2O phase and “△” to PbI2 

phase.
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Figure S5. Time-resolved XRD patterns of fresh prepared FAPbI3 films and those exposed in the 

ambient condition for up to approximately a month. The films were measured after 0, 1 day, 1, 2, 

3, 4 weeks of exposure to the ambient condition. Peaks labeled with “□” suggest the FAPbI3 high 

temperature black α phase and “※” the FAPbI3 low temperature light yellow δ phase.
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Figure S6. XRD patterns of fresh prepared high temperature black α phase (a) and low temperature 

δ phase (b) FAPbI3 perovskite films. The α (δ) phase was annealed at 150 °C (100 °C) for 30 min.



500 600 700 800 900
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
te

ns
ity

wavelength (nm)

 Fresh MAPbI3

 one day
 one week
 two weeks
 three weeks
 four weeks

500 600 700 800 900
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

In
te

ns
ity

wavelength (nm)

 Fresh FAPbI3

 one day
 one week
 two weeks
 three weeks
 four weeks

(a) (b)

Figure S7. Absorption spectra of MAPbI3 (e) and FAPbI3 (f) films after storage in the ambient 

condition for a period from one day to approximately one month.
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Figure S8. Long term photoluminescence (PL) stability of MAPbI3 (a) and FAPbI3 (b) films 

measured at an interval of 15 min in the ambient condition under continuous laser irradiation. A 

512 nm green laser was used (~ 0.1 W/cm2).

We use PL to characterize the photostability of the corresponding perovskite films. Surprisingly, 

the PL intensity first increased a lot under continuous laser irradiation. Since this laser induced PL 

enhancement has been reported previously1, 2, in this paper we simply focus on the PL stability 

instead. The PL intensity of MAPbI3 films finally dropped after 1 h continuous laser irradiation 

and the corresponding PL peak shifts from approximately 770 nm to less than 750 nm after 1.5 h 

continuous laser irradiation (Figure S8 a). This suggests the partial degradation of MAPbI3 films. 

As for FAPbI3, the PL intensity continuous increased even after 2 h irradiation and this PL intensity 

would not drop until after 4 h continuous irradiation (Figure S8 b, Figure S9). The results suggest 

the photostability of FAPbI3 films is far better than that of MAPbI3. This improved photostability 

can be explained by a better thermal stability of FAPbI3 materials than that of MAPbI3.3, 4
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Figure S9. PL spectra of fresh prepared FAPbI3 films under continuous laser irradiation (514 nm) 

for 135 min and 240 min, respectively. The PL intensity did not drop until after ~ 4 h of continuous 

laser irradiation. 



Figure S10. SEM images of PVSC devices (a, b, e, f, i, g: MAPbI3; c, d, g, h, k, l: FAPbI3) freshly 

prepared (a-d), stored in the ambient condition for 3 days (e-h), and stored in the ambient condition 

for a week (i-l).

To begin with, in fresh prepared PVSCs, the Ag layer is rather smooth consisting of small Ag 

particles (Figure S10 a-d). However, pin holes can be clearly observed on the surface of Ag back 

contact (Figure S10 b, d, Figure S11), which act as channels for moisture to diffuse into the devices. 

A striking feature in MAPbI3 devices is that, this smooth uniform metal layer turns rough with bare 

HTM underlayer after exposing to the ambient for a few days. At the same time, small round Ag 

nanoparticles also aggregate into large crystals (possibly AgI according to our XRD analysis), and 

this become more and more severe with time. For FAPbI3 devices, the degradation of Ag back 

contact also occurrs, but much slower than in MAPbI3 PVSCs. This is consistent with our finding 

from the XRD analysis (Figure 2), since compared with MAPbI3 devices, the AgI intensity is much 

smaller in FAPbI3 PVSCs. 
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Figure S11. Top-view (a) and cross-view (b) SEM images of fresh prepared FAPbI3 devices. Here, 

pin holes can be clearly observed in the top metal contact and the hole transport material layer.
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Figure S12. TOF-SIMS profile of a typical degraded MAPbI3 devices after the operational stability 

test (5h, 40℃, AM 1.5G continuous illumination). Different element intensities were considered.
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Figure S13. TOF-SIMS profiles of PVSCs (a, c, e, MAPbI3; b, d, f, FAPbI3) tracking in the ambient 

degradation. (a, b) fresh prepared (deivce esposed outside for 0 days), (c, d) devices exposed to 

ambient for 3 days, (e, f) devices exposed to ambient for a week. 



Figure S14. SEM images of fresh prepared MAPbI3 (a, b), high temperature α phase FAPbI3(c, d), 

low temperature δ phase FAPbI3 (e, f) and α phase FAPbI3 films exposed outside for a week (g, h). 

The MAPbI3 and δ-FAPbI3 were annealed at 100 °C for 30 min respectively, while the α-FAPbI3 

was annealed at 150 °C for 30 min.



0.0 0.2 0.4 0.6 0.8 1.0 1.2
0

5

10

15

20

25

 MAPbI3

C
ur

re
nt

 D
en

si
ty

 （
m

A
/c

m
2 )

Photovoltage (V)
0.0 0.2 0.4 0.6 0.8 1.0 1.2

0

5

10

15

20

25

 FAPbI3

C
ur

re
nt

 D
en

si
ty

 （
m

A
/c

m
2 )

Photovoltage (V)

(a) (b)

Figure S15: J-V curves of the MAPbI3 (a) and FAPbI3 (b) PVSCs under forward scan and reverse 

scan with a scan rate of 50 mV/s. J–V measurements are performed under AM 1.5G one sun 

illumination. 



Table S1. Photovoltaic parameters obtained at forward scan and reverse scan in different PVSCs 
with a scan rate of 50 mv/s. 

sweep 

direction
Voc (V) Jsc (mA/cm2) FF PCE (%)

Hysteresis 

index (%)

reverse 1.07 20.85 0.73 16.26
MAPbI3

forward 1.01 20.28 0.61 12.49
26%

reverse 1.04 21.98 0.63 14.46
FAPbI3

forward 1.03 21.73 0.61 13.65
6.5%

Here the hysteresis index is defined as follows5

RS oc FS oc

RS oc

J (0.8V ) J (0.8V )HI= 100%
J (0.8V )




where JRS(0.8 VOC) and JFS(0.8 VOC) record the photocurrent density at 80% of the VOC at RS and 

FS, respectively.
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