Electronic Supplementary Information

Ultrahigh energy storage and ultrafast ion diffusion in borophene-based anodes for rechargeable metal ion

batteries*

Dewei Rao,‡^a Lingyan Zhang,‡^b Zhaoshun Meng,^b Xirui Zhang,^b Yunhui Wang,^b Guanjun Qiao,^a Xiangqian Shen,*^a Hui Xia,*^c Jiehua Liu^d and Ruifeng Lu*^{be}

^aSchool of Materials Science and Engineering, Jiangsu University, Zhenjiang
212013, P. R. China. E-mail: shenxq@ujs.edu.cn
^bThe Atomic, Molecular & Materials Physics Group, School of Science, Nanjing
University of Science and Technology, Nanjing 210094, P. R. China. E-mail:
rflu@njust.edu.cn
^cHerbert Gleiter Institute of Nanoscience, School of Materials Science and
Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R.
China. E-mail: xiahui@njust.edu.cn
^dFuture Energy Laboratory, School of Materials Science and Engineering, Hefei
University of Technology, Hefei 230009, P. R. China.
^eState Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of
Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China.

Fig. S1 DFT-optimized supercell of borophene (B_{36}) .

Fig. S2 Band structure and DOS of borophene.

Metal	B at groove	B at bulge	atomic radii ¹
Al	2.79	2.42	1.43
Li	2.75	2.37	1.52
Mg	2.80	2.39	1.60
Na	3.12	2.58	1.86
Ca	3.04	2.54	1.97
K	3.54	2.94	2.27

Table S1 The shortest distance between metal and B atom on borophene (unit: Å).

Fig. S3 Band structures and DOSs of metals on borophene (B₃₆).

Fig. S4 Total energy of metals on borophene as a function of the height from metal to borophene surface.

Fig. S5 Thermostable structures of 48 metal atoms adsorbed on B_{36} at 300 K after 5 ps (for $48Li@B_{36}$, a much longer 15 ps simulation was performed).

energies (unit: eV).	0 0		1		
	Al	Li	Mg	Na	K
One atom	3.18	3.50	1.95	3.00	3.09
Multiple atoms	3.96	2.37	1.82	1.81	1.60
First-layer atoms	4.00	2.77	1.89	2.11	1.90
Second-laver atoms	3.93	1.97	1.74	1.47	1.15

1.63

1.51

1.113

0.934

Table S2 Average binding energies of metals on borophene and their cohesive

Table S3 Diffusion barriers of metals on B_{36} along selected paths.

3.39

Cohesive energy¹

	P1 (in meV)	P2 (in eV)	P3 (in eV)
Li	10.53	0.456	0.417
Na	2.55	0.300	0.300
K	7.61	0.223	0.213
Mg	11.76	0.476	0.475
Al	39.24	0.196	0.172

Fig. S6 Band structure and DOS of non-ideal borophene sheets (defective borophene, O- and OH-terminated borophene) and Li-adsorbed samples.

Fig. S7 Optimized adsorptive sites of Li on defective borophene and corresponding binding energies. Purple balls are Li, and pink and grey balls are B.

Fig. S8 Optimized adsorptive sites and corresponding binding energies. For Li on (a) nearest groove of $O-B_{36}$, and (b) the groove opposite to the O-attached side of $O-B_{36}$, (c) nearest groove of $OH-B_{36}$ and (d) the groove opposite to the O-attached side of $OH-B_{36}$. Purple balls are Li, and pink and gray balls are B, red balls are O and white balls are H.

Fig. S9 Models of selected borophene ribbons.

Fig. S10 Band structures and DOSs of ribbons and their Li-adsorbed samples.

Reference

1 Kittle, C. *Introduction to Solid State Physics*. 2005, *8th Edition*, John Wiely & Sons, Inc.