Generation of Three Dimensional Pore-Controlled Nitrogen-doped

Graphene Hydrogels for High-Performance Supercapacitor by

Employing Formamide as Modulator

Yao Wang, Zidong Wei*, Yao Nie and Yun Zhang

Chongqing Key Laboratory of Chemical Process for Clean Energy and Resource Utilization, College of Chemistry and Chemical

Engineering.

Chongqing University, Chongqing,400044 (China)

E-mail: zdwei@cqu.edu.cn (Wei)

1. Experimental section

1.1. Synthesis of NGH-1, NGH -2, NGH -3, NGH -4.

In a typical synthesis, GO aqueous suspension and formamide were mixed under vigorous stirring. After 2h vigorous stirring, the mixed solution was transferred into a Teflon-lined stainless steel autoclave, a thermal treatment was performed for the Teflon-liner in an electric oven at 180°C for 12h. By altering the volume ratio of GO aqueous suspension and formamide (V_{GO} : $V_{formamide}$ = 2:8, 4:6, 6:4, 8:2, respectively.), four NGHs were produced, referred as to NGH-1, NGH-2, NGH-3, NGH-4, respectively. Then the obtained NGHs were freeze-dried.

1.2 Characterization of catalysts

The morphology and structure of NGHs were observed under field emission scanning electron microscopy (FE-SEM, JSM-7800F (JEOL)). Low-resolution transmission electron microscopy (TEM) was carried out on a Zeiss LIBRA 200 FETEM instrument operating at 200 kV. The crystal structures of NGHs were confirmed using the automated X-ray diffraction equipment (XRD, Rigaku D/MaXIIIA, Japan). The surface area of NGHs is calculated from N₂ adsorption isotherms using Brunauer-Emmett-Teller BET (Shimadzu, Micromeritics ASAP 2010 Instrument). XPS was acquired using a Kratos XSAM800 spectrometer equipped with monochromatic Al X-ray source (Al KR, 1.4866 keV), and the binding energy was calibrated by using 284.6 eV as the C 1s peak energy.

1.3. Electrochemical activity tests

Electrochemical measurements: All electrochemical experiments were performed in a standard three-electrode cell at room temperature on a Parstat 2273 potentiostat/galvanostat workstation assembled with a model 636 rotational system (AMETEK) at room temperature. The cell is consisting of a glassy carbon working electrode (GC electrode, 5 mm in diameter, PINE: AFE3T050GC), an Ag/AgCl (saturated KCl) reference electrode, and a platinum foil counter electrode. All potentials in this study, however, are given relative to the reversible hydrogen electrode (RHE). The working electrodes were prepared by applying catalyst ink onto glassy carbon (GC) disk electrodes. In brief, the samples were dispersed in ethanol and ultrasonicated for 15 minutes to form a uniform catalyst ink. Well-dispersed sample ink was applied onto a pre-polished

GC disk. After drying at room temperature, a drop of 0.05 wt. % Nafion solution was applied onto the surface of the sample layer to form a thin protective film.

The samples were characterized by a cyclic voltammetry (CV) and galvanostatic charge–discharge cycling were performed at room temperature in 6 M aqueous KOH in the potential range 0 to 0.8 V (ORR). The scan rate for CV is 5, 10, 20, 50, 100, 200 mV/s, respectively.

Electrochemicalim- pedance spectroscopy (EIS) measurements were carried out using an electrochemical work station (CHI660b, Chen Hua Instruments Co. Ltd. , Shanghai).

Fig. S1. Digital images of the NGHs; a). NGH-1, b). NGH-2, c). NGH-3, d). NGH-4,

Fig. S2. SEM of graphene oxide (a) and NGH-3 (b, c)

Fig. S3. XRD pattern of NGHs

Fig. S4. (a) N_2 Adsorption (black line)- desorption (red line) isotherms of various NGHs; (b) Pore size distribution curves of various NGHs

Fig. S5. SEM images of NGH-1(a, b); NGH-2(c, d); NGH-3(e, f); NGH-4(g, h);

Fig. S6. XPS spectrum of NGHs.

Fig. S7. Raman of NGH-1(a); NGH-2(b); NGH-1(c); NGH-1(d)

Fig. S8. (a, b, c) CV curves of NGHs for different scan rates. (d, e, f) Galvanostatic charge/discharge curves of NGHs under different constant currents. (a, d) NGH-1; (b, e) NGH-2; (c, f) NGH-4.

Fig. S9. Nyquist plots of the NGHs

Fig. S10. The capacitance comparison of NGHs

Table. S1. The content of N.

	NGH-1	NGH-2	NGH-3	NGH-4
Ν	7.19 at.%	4.93 at.%	4.44 at.%	2.71%
Pyridinic N	32.72 at.%	27.17 at.%	26.28 at.%	25.40 at.%
Nitrile N	39.64 at.%	48.27 at.%	46.36 at.%	52.54 at.%
Quaternary N	27.62 at.%	16.16 at.%	14.55 at.%	10.62 at.%
Pyridinic-N-	0	9.20 at 9/	12.81 at 9/	11.45 at 9/
oxide	U	0.39 al.%	12.01 al.%	11.43 al.70

sample	method	capacitance	rate	system	Ref.
This work	Hydrothermal Process	275 F/g	0.5A/g	3	/
self-assembled graphene hydrogel	Hydrothermal Process	175F/g	1A/g	2	ACS Nano, 2010, 4(7), 4324–4330.
graphene aerogel	Sol-gel	128F/g	0.05A/ g	2	J. Mater. Chem., 2011, 21, 6494– 6497
Graphene Hydrogels	Hydrothermal Process	220F/g	1A/g	2	J. Phys. Chem. C 2011, 115, 17206– 17212
B,N-doped-GA		239F/g			
N-doped-GA	Hydrothermal	190F/g	1mV/s	2	Adv. Mater. 2012,
B-doped-NG	Process	228F/g	1111 V/S	5	24, 5130–5135
Undoped-NG		181F/g			
Nitrogen-doped graphene sheets	Hydrothermal Process	161F/g	0.5A/g	3	Electrochimica Acta, 2012, 85, 459-466.
graphene aerogel -	Hydrothermal	226F/g	1mV/s	3	J. Am. Chem. Soc. 2012, 134, 19532–19535
based mesoporous carbons	Process and calcination	168F/g	2A/g		
graphene aerogel	Hydrothermal Process	176F/g	1mV/s		
3D architectures of graphene	Self-assembly	151.6F/g	0.5A/g	3	J. Mater. Chem., 2012, 22, 22459– 22466
nitrogen-doped graphene hydrogels	Hydrothermal Process	190.1F/g	10A/g	2	Nano Energy, 2013, 2, 249–256
nitrogen- and		320F/g	1A/g		ACS Appl. Mater.
sulfur-codoped 3D mesoporous carbon	calcination	143F/g	10A/g	3	Interfaces, 2014, 6, 2657–2665
Nitrogen-Doped Graphene	Microwave Irradiation	200F/g	0.5A/g	3	ACS Appl. Mater. Interfaces, 2014, 6, 6361–6368
RGO/CB	vacuum filtration process	95.7F/g	0.5mV /s	2	Journal of Power Sources, 2014, 271, 269
Nitrogen_Doned	Hydrothermal	176F/g	10A/g		ACS Appl. Mater.
Graphene Aerogels	Process	223F/g	0.2A/g	2	Interfaces 2015, 7, 1431–1438
Crumpled	Polymerization	245.9F/g	1A/g	2	Adv. Mater. 2012,

Table. S2. Comparsion of NGH-3 with other graphene framework.

Nitrogen-Doped Graphene	and calcination	302F/g	5mV/s	3	24, 5610–5616
HTrGO-B (ammonia solution treatment)	Hydrothermal Process	185F/g	1A/g	2	Journal of Power Sources, 2013, 233, 313
Activated Graphene	Microwave Irradiation and KOH activation	165F/g	1.4A/g	2	Science 332, 1537– 1541 (2011).
Activated Reduced Graphene Oxide Films	KOH activation	120F/g	10A/g	2	Nano Lett. 2012, 12, 1806–1812
Activated Graphene based carbon	Microwave Irradiation and KOH activation	172F/g	2A/g	2	ACS Nano, 2013, 7, 6899-6905
nitrogen-doped graphene hydrogels	Hydrothermal Process	246 F/g	3A/g	3	J. Mater. Chem. A, 2014, 2, 8352–8361
3D hierarchical carbon	sponge- templating with KOH activation	188F/g	1A/g	3	Adv. Mater. 2016, 28, 5222–5228
3D porous carbon fabrics	Hydrothermal Process	229 F/g	1A/g	3	ACS Appl. Mater. Interfaces 2015, 7, 4257–4264
Reduced graphene oxide	calcination	182 F/g	1A/g	2	Chem. Commun., 2015, 51, 5598- 5601.
3D Porous N-Doped Graphene	Hydrothermal Process and calcination	509 F/g	1A/g	3	Adv. Mater. 2015, 27, 5171–5175
Reduced graphene oxide	using redox additive electrolyte	298F/g	0.8A/g	2	Carbon ,2015, 90, 260 –273
Holey Graphene Oxide	Hydrothermal Process and H_2O_2 activation	283 F/g	1 A/g	3	Nano Lett. 2015, 15, 4605–4610
Ultrathin porous carbon shell	Calcination	251 F/g	1 A/g	3	Carbon, 2017, 111 419-427
graphene nanoribbons	Calcination and KOH	189 F/g	0.1A/g	2	Nature Chemistry, 2016, 8, 718–724

	activation				
3D Graphene-like	Templating	252 F g	10mV/	2	Carbon, 2017, 111
carbon	and calcination		S		128-132