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Fig. S1. (a) XRD patterns of GF-PI, PI and GF; (b) TGA of GF-PI, PI and GF, carried out in N2 

at a heating rate of 20 °C min–1; FTIR of (c) GF, GO and (d) GF-PI, PI and GF; (e) Raman 

spectra of GF-PI and GO; (f) XPS spectrum of GF-PI and the corresponding high-resolution (g) 

C1s; (h) N1s and (i) O1s peaks.

The TGA curves indicates that the weight reduction in both GF-PI and GF occurred slightly 

quickly than pure PI between 200-400 °C, which is attributed to the decomposition of a small 

amount of residual oxygen functional groups on the GF surface. The content of PI is caculated as 

follow:
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PI%= [(pure GFWeight retention ratio- compositeWeight retention ratio)/(GFWeight retention ratio- pure PIWeight 

retention ratio)]*100%

There are peaks at 3430, 1625 and 1385 cm-1 that attributed to –OH, O-C-O, O-C-O, C=O in 

the FT-IR of GO samples.S1 For GF, such peaks are almost reduced or disappeared, indicating 

that GO is almost reduced by solvothermal and annealing treatment (Fig. S1c). Both pure PI and 

GF-PI have a peak at 1340 cm-1, which is ascribed to the stretching vibration of the C-N bond. 

The absorption peaks at 1703 and 1670 cm−1 are ascribed to the asymmetry and symmetry 

stretching vibration of C=O bond, respectively (Fig. S1d).S2 This finding indicates that the 

carbonyl group is still maintained in the polymer structure. The GF-PI increased intensity ratio of 

D peak to G peak in comparison with GO in the Raman spectra, which is ascribed to the 

solvothermal and thermal reduction (Fig. S1e).

The chemical compositions of the GF-PI are examined by X-ray photoelectron spectroscopy 

(XPS, Fig. S1e-h). The component peak CI at 284.6 eV, corresponding to C-C coordination, is 

attributed to the carbon atoms of graphitic carbon. The peak CII at 285.3 eV is related to the C-N 

bond. Peak CIII at 288.1 eV corresponds to C=O double bond. The high resolution N 1s spectra 

shows a clear peak at 399.3 eV, corresponding to the N-C bond of pyridinic N from PI unit.S3 

The component peak of O 1s locates at 531.3 eV and corresponds to C=O bond.
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Fig. S2. (a, b) Charge/discharge profile of C-PI and G-PI at a current density of 40 mA g-1 , (c) 

Cycling performance and (d) charge/discharge profile of pure GF at a current density of 40 mA 

g-1 for LIBs, 

Calculation of the utilization ratio of PI in the GF-PI composites is as follows:

 
(1 )

composites GF GF

GF polymer theoretical

C C P
utilization ratio

P C
 


  ，

Where C is discharge capacity of GF-PI and P is weight percentage in the composite.
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Fig. S3. Equivalent circuit for GF-PI, G-PI and C-PI electrodes

Table S1. The resistance of C-PI, G-PI and GF-PI electrodes

samples RΩ (Ω) Rct (Ω)
C-PI 3.5 279.2
G-PI 2.5 184.8

GF-PI 2.2 66.5
GF-PI after 600 cycles 2.2 48.3
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Fig. S4. (a, b) Charge/discharge profile of C-PI and G-PI at a current density of 50 mA g-1 , (c) 

Cycling performance and (d) charge/discharge profile of pure GF at a current density of 50 mA 

g-1 for SIB in the voltage range of 1.5–3.5 V.
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Table S2. Electrochemical performance of typical PI-based cathode materials for LIB

Materials

Ratio of 

active

materials

Current

density

(mA g-1)

Initial 

capacity（mAh 

g-1）

High 

current 

density

(mA g-1)

Capacity

(mAh g-1)

Capacity 

Retention

 (Cycles)

Current 

density

(mA g-1)

Ref.

226 120PI/SWNT

(PMDA/EDA)

<100% 44
N. A.

(by electrode)

8860
N. A.

(by electrode)

85%

 (200)
221

Adv. 

Mater., 

2014, 26, 

3338

160 74
PMTA/SWCNT 

(PMDA/TDA)
65% 38

104

(by electrode)

3830
48

(by electrode)

87% 

(200)
191

Adv. 

Mater. 

2015, 27, 

6504

PMAQ–SWNT

 (PMDA/AQ)

100% 44
190

(by electrode)
4180

120

(by electrode)

91%

 (300)
221

JMC.A 

2016, 4, 

2115

125 115
PI/CNT

(PTCDA/EDA)
85% 27

106

(by electrode)

546
98

(by electrode)

74% 

(300)
100

JMC.A 

2013, 1, 

6366

177 38PI-FLEG

(PMDA/EDA)
65% 44

115

(by electrode)

2200
25

(by electrode)

80%

 (221)
200

RSC Adv. 

2016, 6, 

33287

175 1013D-RGO/PI

(PMDA/EDA)
80% 44

140

886

81

82% 

(150)
221

JMC.A 

2014, 2, 

10842
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(by electrode) (by electrode)

205 135PI-FGS-b

(NTCDA/EDA)
60% 37 123

(by electrode)

3670 81

(by electrode)

N. A.

Nano Lett. 

2012, 12, 

2205

188 173PI-4

(NTCDA/EDA)
60% 18 112

(by electrode)

74 104

(by electrode)

95% 

(100)
74

Angew. 

Chem. Int 

. Ed. 

2010, 49, 

8444

91%

（100）
50

GF-PI

(NTCDA/EDA)
100% 40

240

(by electrode)
4000

102

(by electrode)
81% 

(600)
100

This work

Table S3. Electrochemical performance of typical PI-based cathode materials for SIB

Materials

Precursor, structure

Ratio of 

active

materials

Current

density

(mA g-1)

Initial 

capacity（mAh 

g-1）

High 

current 

density

(mA g-1)

Capacity

(mAh g-1)

Capacity 

Retention

 (Cycles)

Current 

density

(mA g-1)

Ref.

124PMDA-based PI2

(PMDA/EDA)

60% 25 74.4

(by electrode)

N. A.
40%

(62)
200

Adv. 

Energy 

Mater. 

2014, 4, 

1301651
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132NTCDA-based PI2

(NTCDA/EDA)

60% 25 79.2

(by electrode)

N. A. 65%

(100)
200

Adv. 

Energy 

Mater. 

2014, 4, 

1301651

150 75PTCDA-based PI2

(PTCDA/EDA)

30% 25 45

(by electrode)

10000
22.5

87.5%

(5000)
200

Adv. 

Energy 

Mater. 

2014, 4, 

1301651

116PTCDA-based PI3

(PTCDA/1,3-

propanediamine)

NN

O

OO

O

n

60% 25 69.6

(by electrode)

N. A. N. A. N. A. N. A.

Adv. 

Energy 

Mater. 

2014, 4, 

1301651

100PTCDA-based PI4

(PTCDA/1,4-

diaminobutane)
60% 25 60

(by electrode)

N. A. N. A. N. A. N. A.

Adv. 

Energy 

Mater. 

2014, 4, 

1301651

126 90PI

(PTCDA/N2H4 H2O)·

60% 100 75.6

(by electrode)

800
54

90%

(50)
100

J. Mater. 

Chem. A 

2015, 3, 

10453

162PAQI

PMDA/26DAAQ

40% 50 64.8

(by electrode)

N. A. N. A.
95%

(150)
50

Electro. 

Commun. 

2015, 60, 

117
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179PAQI

NTCDA/26DAAQ

40% 50 71.6

(by electrode)

N. A. N. A.
95%

(150)
50

Electro. 

Commun. 

2015, 60, 

117

220 75PAQI

NTCDA/14DAAQ

40% 50 88

(by electrode)

1000 30

(by electrode)

82%

(150)
50

J. Mater. 

Chem. A 

2016, 4, 

11491

140 84PNTCDA

NTCDA/EDA

30% 140 42

(by electrode)

2520 25.2

(by electrode)

68%

(500)
140

RSC Adv. 

2014, 4, 

25369

~100%

(150) 50

GF-PI

(NTCDA/EDA)
100% 50

213

(by electrode)
1000

116

(by electrode) 80.4%（10

00）
1000

This work
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