Electronic Supplementary Information

Three-Dimensional Graphene/Polyimide Composite-Derived Flexible High-

Performance Organic Cathode for Rechargeable Lithium and Sodium

Batteries

Yanshan Huang,^a Ke Li,^a Jingjing Liu,^a Xing Zhong,^b Xiangfeng Duan,^b Muhammad Imran Shakir,^c and Yuxi Xu*^a

^aState Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

^bDepartment of Chemistry and Biochemistry University of California, Los Angeles California 90095, USA.

^cSustainable Energy Technologies Center, College of Engineering, King Saud University, Riyadh 11421, Kingdom of Saudi Arabia.

E-mail: xuyuxi@fudan.edu.cn

Fig. S1. (a) XRD patterns of GF-PI, PI and GF; (b) TGA of GF-PI, PI and GF, carried out in N_2 at a heating rate of 20 °C min⁻¹; FTIR of (c) GF, GO and (d) GF-PI, PI and GF; (e) Raman spectra of GF-PI and GO; (f) XPS spectrum of GF-PI and the corresponding high-resolution (g) C1s; (h) N1s and (i) O1s peaks.

The TGA curves indicates that the weight reduction in both GF-PI and GF occurred slightly quickly than pure PI between 200-400 °C, which is attributed to the decomposition of a small amount of residual oxygen functional groups on the GF surface. The content of PI is caculated as follow:

PI%= [(pure GF_{Weight retention ratio}- composite_{Weight retention ratio})/(GF_{Weight retention ratio}- pure PI_{Weight retention ratio})]*100%

There are peaks at 3430, 1625 and 1385 cm⁻¹ that attributed to –OH, O-C-O, O-C-O, C=O in the FT-IR of GO samples.^{S1} For GF, such peaks are almost reduced or disappeared, indicating that GO is almost reduced by solvothermal and annealing treatment (Fig. S1c). Both pure PI and GF-PI have a peak at 1340 cm⁻¹, which is ascribed to the stretching vibration of the C-N bond. The absorption peaks at 1703 and 1670 cm⁻¹ are ascribed to the asymmetry and symmetry stretching vibration of C=O bond, respectively (Fig. S1d).^{S2} This finding indicates that the carbonyl group is still maintained in the polymer structure. The GF-PI increased intensity ratio of D peak to G peak in comparison with GO in the Raman spectra, which is ascribed to the solvothermal and thermal reduction (Fig. S1e).

The chemical compositions of the GF-PI are examined by X-ray photoelectron spectroscopy (XPS, Fig. S1e-h). The component peak C_I at 284.6 eV, corresponding to C-C coordination, is attributed to the carbon atoms of graphitic carbon. The peak C_{II} at 285.3 eV is related to the C-N bond. Peak C_{III} at 288.1 eV corresponds to C=O double bond. The high resolution N 1s spectra shows a clear peak at 399.3 eV, corresponding to the N-C bond of pyridinic N from PI unit.^{S3} The component peak of O 1s locates at 531.3 eV and corresponds to C=O bond.

Fig. S2. (a, b) Charge/discharge profile of C-PI and G-PI at a current density of 40 mA g⁻¹, (c) Cycling performance and (d) charge/discharge profile of pure GF at a current density of 40 mA g⁻¹ for LIBs,

Calculation of the utilization ratio of PI in the GF-PI composites is as follows:

$$utilization \ ratio = \frac{C_{composites} - C_{GF} \times P_{GF}}{(1 - P_{GF}) \times C_{polymer, theoretical}}$$

Where C is discharge capacity of GF-PI and P is weight percentage in the composite.

Fig. S3. Equivalent circuit for GF-PI, G-PI and C-PI electrodes

samples	$R_{\Omega}(\Omega)$	$R_{ct}(\Omega)$
C-PI	3.5	279.2
G-PI	2.5	184.8
GF-PI	2.2	66.5
GF-PI after 600 cycles	2.2	48.3

Table S1. The resistance of C-PI, G-PI and GF-PI electrodes

Fig. S4. (a, b) Charge/discharge profile of C-PI and G-PI at a current density of 50 mA g^{-1} , (c) Cycling performance and (d) charge/discharge profile of pure GF at a current density of 50 mA g^{-1} for SIB in the voltage range of 1.5–3.5 V.

Materials	Ratio of active materials	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	High current density (mA g ⁻¹)	Capacity (mAh g ⁻¹)	Capacity Retention (Cycles)	Current density (mA g ⁻¹)	Ref.
PI/SWNT (PMDA/EDA) $\left[\begin{array}{c} & & \\ & & \\ & & \\ & & \\ \end{array} \right]_{n}$	<100%	44	226 N. A. (by electrode)	8860	120 N. A. (by electrode)	85% (200)	221	Adv. Mater., 2014, 26, 3338
$\frac{\text{PMTA/SWCNT}}{(\text{PMDA/TDA})}$	65%	38	160 104 (by electrode)	3830	74 48 (by electrode)	. 87% (200)	191	Adv. Mater. 2015, 27, 6504
$\frac{\text{PMAQ-SWNT}}{(\text{PMDA/AQ})}$ $\left[- \int_{\gamma} + $	100%	44	190 (by electrode)	4180	120 (by electrode)	91% (300)	221	<i>JMC.A</i> 2016, 4, 2115
PI/CNT (PTCDA/EDA) $\left[\begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	85%	27	125 106 (by electrode)	546	115 98 (by electrode)	74% (300)	100	<i>JMC.A</i> 2013, 1, 6366
PI-FLEG (PMDA/EDA) $\left[- \sqrt[3]{r} + \sqrt[3]{r} + \sqrt[3]{r} \right]_n$	65%	44	177 115 (by electrode)	2200	38 25 (by electrode)	80% (221)	200	<i>RSC Adv.</i> 2016, 6, 33287
3D-RGO/PI (PMDA/EDA)	80%	44	175	886	101 81	82% (150)	221	<i>JMC.A</i> 2014, 2, 10842

 Table S2. Electrochemical performance of typical PI-based cathode materials for LIB

			(by electrode)		(by electrode)			
PI-FGS-b (NTCDA/EDA)			205		135			Nano Lett.
	60%	37	123	3670	81	N	A.	2012, 12,
			(by electrode)		(by electrode)			2205
PI-4			188		173			Angew.
(NTCDA/EDA)	60%	18	112	74	104	95%	74	. Ed.
			(by electrode)		(by electrode)	(100)		2010, 49,
								8444
GF-PI (NTCDA/EDA)	100%	40	240	4000	102	91% (100)	50	- This work
		(by electrode)		(by electrode)	81% (600)	100		

Table S3. Electrochemical performance of typical PI-based cathode materials for SIB

Materials Precursor, structure	Ratio of active materials	Current density (mA g ⁻¹)	Initial capacity (mAh g ⁻¹)	High current density (mA g ⁻¹)	Capacity (mAh g ⁻¹)	Capacity Retention (Cycles)	Current density (mA g ⁻¹)	Ref.
PMDA-based PI2 (PMDA/EDA)	60%	25	124 74.4 (by electrode)		N. A.	40% (62)	200	Adv. Energy Mater. 2014, 4, 1301651

NTCDA-based PI2			132					Adv.
(NTCDA/EDA)								Energy
	60%	25	70.2	N. A.		65%	200	Mater.
			(by cleatrode)			(100)		2014, 4,
n			(by electrode)				1301651	
PTCDA-based PI2			150		75			Adv.
(PTCDA/EDA)								Energy
	30%	25	45	10000		87.5%	200	Mater.
			(by electrode)		22.5	(5000)		2014, 4,
n			(by electrode)					1301651
PTCDA-based PI3			116					
(PTCDA/1 3-			116					Adv.
propapediamine)								Energy
	60%	25	69.6	N. A.	N. A.	N. A.	N. A.	Mater.
			(by electrode)					2014, 4,
								1301651
PTCDA-based PI4			100					
(PTCDA/1 4-			100					Adv.
diaminobutane)								Energy
	60%	25	60	N. A.	N. A.	N. A.	N. A.	Mater.
			(by electrode)					2014, 4,
								1301651
PI			126		90			
(PTCDA/N ₂ H₄·H ₂ O)								J. Mater.
	60%	100	75.6	800		90%	100	Chem. A
			(by electrode)		54	(50)		2015, 3,
			(by cicci duc)					10453
PAQI			162					Electro.
PMDA/26DAAQ						95%		Commun.
	40%	50	64.8	N. A.	N. A.	(150)	50	2015, 60,
			(by electrode)					117
с л								

PAQI NTCDA/26DAAQ	40%	50	179 71.6 (by electrode)	N. A.	N. A.	95% (150)	50	Electro. Commun. 2015, 60, 117
PAQI NTCDA/14DAAQ $\left[\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	40%	50	220 88 (by electrode)	1000	75 30 (by electrode)	82% (150)	50	J. Mater. Chem. A 2016, 4, 11491
PNTCDA NTCDA/EDA	30%	140	140 42 (by electrode)	2520	84 25.2 (by electrode)	- 68% (500)	140	<i>RSC Adv.</i> 2014, 4, 25369
GF-PI (NTCDA/EDA)	100%	50	213 (by electrode)	1000	116 (by electrode)	~100% (150) 80.4% (10 00)	50	• This work

Reference

- (S1) Huang, Y.; Wu, D.; Wang, J.; Han, S.; Lv, L.; Zhang, F.; Feng, X. Small 2014, 10, 2226-2232.
- (S2) Chen, L.; Li, W.; Wang, Y.; Wang, C.; Xia, Y. RSC Adv. 2014, 4, 25369-25373.
- (S3) Ma, L.; Niu, H.; Cai, J.; Zhao, P.; Wang, C.; Bai, X.; Lian, Y.; Wang, W. *Carbon* 2014, 67, 488-499.