Supporting Information for *Journal Materials Chemistry A*

Electronic Supporting Information

Fabrication of thermo-responsive polymer functionalized reduced graphene oxide@Fe₃O₄@Au magnetic nanocomposites for enhanced catalytic applications

Preparation of Au NPs@ RGO@ Fe₃O₄ and Au NPs@GO

50 mg RGO@ Fe₃O₄ or GO was first dispersed in 15 mL of ultrapure water. Then 2.5 mL of 0.01g mL⁻¹ HAuCl₄ was slowly added into the mixture and further reacted 2 h at room temperature. After 2 h under magnetic stirring, 1 mL NaBH₄ (0.144 M) solution was quickly added, and the stirring sustained for 24 h. The product was separated by a magnet and the supernatant was discarded, and then washed with ultrapure water and ethanol three times, and finally dried in vacuum.

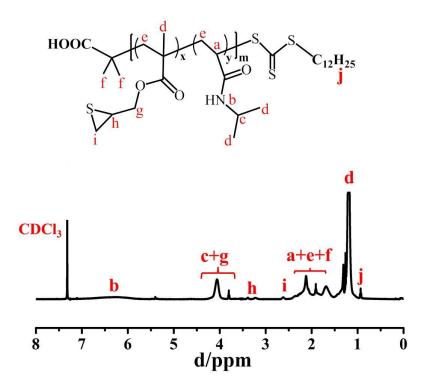


Fig. S1 ¹H NMR spectrum of P(NIPAM-co-ETMA)-CTA.

Fig.S2 Photograph of Au NPs@GFDP dispersed in aqueous solution after three weeks.

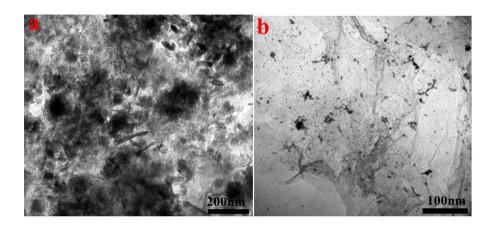


Fig. S3 TEM images of Au NPs@ RGO@ Fe₃O₄ (a) and Au NPs@GO (b).

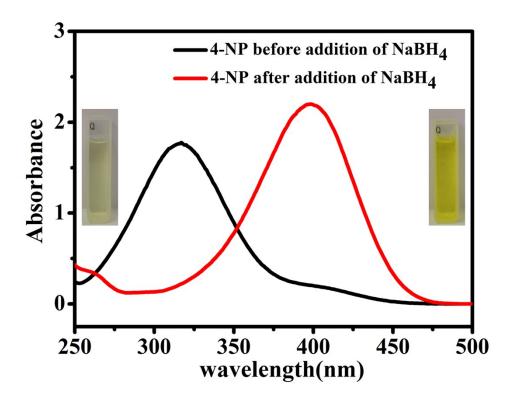


Fig. S4 UV-vis spectra of 4-nitrophenol solution before and after the addition of NaBH₄.

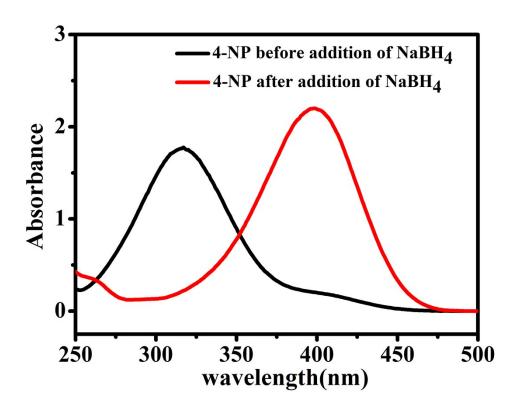


Fig. S5 UV-vis spectra of 4-nitrophenol solution with NaBH $_4$ without Au NPs@GFDP catalyst.

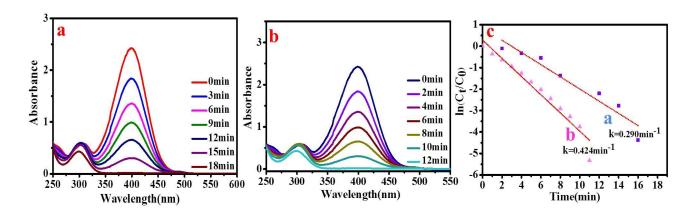


Fig. S6 Successive reductions of p-NP using (a) Au NPs@ RGO@ Fe₃O₄ (4 mg) and AuNPs@GO (b) (4 mg), (c) $\ln(C_1/C_0)$ vs reaction time (t) plots for Au NPs@ RGO@ Fe₃O₄ (a)(4 mg) and Au NPs@GO (b) (4mg) catalysts.

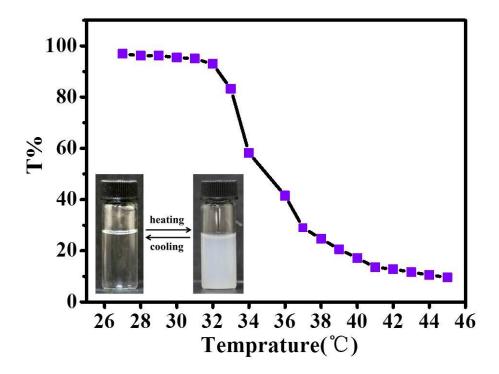


Fig.S7 Temperature dependence of optical transmittance at 550 nm for $P(NIPAM_{52}\text{-co-ETMA}_{10})_{62}$ -CT.0.0A in water.

Table S1 Comparison of the ability of various catalysts for catalyzing the reduction of p-NP.

Samples	Support materials	k (min ⁻¹)	TOF(h-1)	References
graphene/PDA-Au NPs	graphene/PDA	0.18	22.8	1
Au-PDA/RGO	PDA/RGO	0.012	42	2
Au/graphene	graphene	0.1902	12	3
GO/TWEEN 20-Au	GO/TWEEN 20	0.2537	126	4
Ag-Au-rGO	rGO	0.2082	152	5
Au NPs@GFDP	GFDP	0.665	439	In this work

References

¹ J. Luo, N. Zhang, R. Liu and X. Liu, RSC Adv., 2014, 4, 64816-64824.

² W. Ye, J. Yu, Y. Zhou, D. Gao, D. Wang, C. Wang and D. Xue, Appl. Catal. B: Environ, 2016, 181, 371-378.

³ J. Li, C.-y. Liu and Y. Liu, J. Mater. Chem., 2012, 22, 8426-8430.

⁴ W. Lu, R. Ning, X. Qin, Y. Zhang, G. Chang, S. Liu, Y. Luo and X. Sun, *J. Hazard. Mater.*, 2011, 197, 320-326.

⁵ H. K, R. P. Joshi, S. D.V, V. N. Bhoraskar and S. D. Dhole, *Appl. Surf. Sci.*, 2016, 389, 1050-1055.