Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supporting information

Mixed-metallic MOFs based electrode materials for high performance hybrid supercapacitors

Yang Jiao, Jian Pei*, Dahong Chen, Chunshuang Yan, Yongyuan Hu, Qiang Zhang,

Gang Chen*

MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion

and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of

Technology, Harbin 150001, People's Republic of China

*Corresponding author: E-mail: gchen@hit.edu.cn and peijian008@163.com

Fig. S1. (a) Typical SEM images of Ni-MOF and (b) EDS spectrum of Ni-MOF

Fig. S2. The TG-DSC curves of (a) Co/Ni-MOF (b) Zn/Ni-MOF and (c) Ni-MOF. The N_2 adsorption and desorption isotherms of (d) Co/Ni-MOF (e) Zn/Ni-MOF and (f) Ni-MOF (inset is the pore size distributions of the MOFs).

Fig. S3. (a, c) Cyclic voltammograms of Ni-MOF and Zn/Ni-MOF at different scan rates, respectively; (b, d) Charge-discharge curves of Ni-MOF and Zn/Ni-MOF at different current densities, respectively.

Fig. S4. (a) Charge and discharge curves of CNTs-COOH at different current densities ranged from 1 to 10 A g⁻¹. (b) CV curves of CNTs-COOH at the scan rate between 5 and 80 mV s⁻¹. (c) Specific capacity as a function of current density. (d) Nyquist plots of the CNTs-COOH.

Fig. S5. (a) Cyclic voltammetry curves of the Zn/Ni-MOF and CNT-COOH electrodes performed in a three-electrode cell in a 3 M KOH electrolyte at a scan rate of 5 mV s⁻¹; (b) CV curves at the different potentials (50 mV s⁻¹); (c) Cyclic voltammetry curves at the different scan rates; (d) Charge-discharge curves at the different potentials (1 A g⁻¹); (e) Charge-discharge curves at the different current density.

Fig. S6. (a) Cyclic voltammetry curves of the Ni-MOF and CNT-COOH electrodes performed in a three-electrode cell in a 3 M KOH electrolyte at a scan rate of 5 mV s⁻¹; (b) CV curves at the different potentials (50 mV s⁻¹); (c) Cyclic voltammetry curves at the different scan rates; (d) Charge-discharge curves at the different potentials (1 A g⁻¹); (e) Charge-discharge curves at the different current density

Table S1 Ions ratio of metals in M-MOFs determined by ICP analysis.

Sample	Ni%	Co%	Zn%
Ni-MOF	100	0	0
Co/Ni-MOF	77	23	0
Zn/Ni-MOF	78	0	22

 Table S2
 Various performance parameters for our Co/Ni-MOF//CNT-COOH

 Asymmetric Supercapacitors

Current density (A·g ⁻¹)	Discharge time (s)	Capacitance (F·g ⁻¹)	Energy density (W·h·kg ⁻¹)	Power density (W·kg ⁻¹)
1	307	211.7	61.8	725
2	135.7	187	54.7	1450
5	42.9	147.8	43	3625
8	19.7	108.7	31.7	5800
10	14.3	98.6	28.7	7250

density
1
⟨g⁻¹)
25
50
25
00
50

Table S3 Various performance parameters for our Zn/Ni-MOF//CNT-COOH

 Asymmetric Supercapacitors

Table S4 Various performance parameters for our Ni-MOF//CNT-COOH Asymmetric

 Supercapacitors

Current density (A·g ⁻¹)	Discharge time (s)	Capacitance (F·g ⁻¹)	Energy density (W·h·kg ⁻¹)	Power density (W·kg ⁻¹)
1	255.6	182.6	49.7	700
2	97	138.6	37.7	1400
5	33.3	118.9	32.3	3500
8	18.1	103.4	28.1	5600
10	11.7	83.6	22.8	7000

 Table S5 Comparison of electrochemistry performance of electrochemical energy stored devices fabricated in our work with others reported.

Materials	Counter	Electrolyte	Potential	Energy	Power	Ref.
			Window	Density	Density	
			(V)	(W·h·Kg ⁻	(W·Kg-	
				1)	1)	
SP@rGO	SP@rGO@Co	2 M KOH	1.5	33.01	800	[1]
NiO	rGO	1 M KOH	1.7	39.9	360	[2]
MWCNT/amor-						
Ni(OH) ₂	rGO/CNT	1 M KOH	1.5	58.5	780	[3]
/PEDOT:PSS						
Ni-MOF/CNT	rGO/C ₃ N ₄	6 M KOH	1.6	36.6	480	[4]
						Our
Ni-MOF	CNTs-COOH	3 M KOH	1.4	49.7	700	Wor
						k
						Our
Zn/Ni-MOF	CNTs-COOH	3 M KOH	1.45	53.6	725	Wor
						k

Co/Ni-MOF	CNTs-COOH	3 М КОН	1.45	61.8	725	Our Wor k
SP: macroporous	s 3D sponge					
MWCNT: multiwalled carbon nanotube						
PEDOT:PSS: poly (3,4-ethylenedioxythiophene)-poly(styrenesulfonate)						
rGO: reduced graphene oxide						
CNT: carbon nan	otube					

References

- 1. D. P. Dubal, R. Holze, P. Gomez-Romero, Sci. Rep., 2014, 4, 7349-7358.
- F. Luan, G. Wang, Y. Ling, X. Lu, H. Wang, Y. Tong, X. X. Liu, Y. Li, *Nanoscale*, 2013, 5, 7984–7990.
- 3 W. C. Jiang, D. S. Yu, Q. Zhang, K. L. Goh, L. Wei, Y. L. Yong, R. R. Jiang, J. Wei, Y. Chen, *Adv. Funct. Mater.*, 2015, 25, 1063–1073.
- 4 P. Wen, et al., J. Mater. Chem. A, 2015, 3, 13874–13883.