Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Support Information

Industrially weavable metal/cotton yarn air electrodes for highly

flexible and stable wire-shaped Li-O₂ batteries

Xiujing Lin,^a Qi Kang,^a Ziqiang Zhang,^a Ruiqing Liu,^a Yi Li,^a Zhengdong Huang,^a Xiaomiao Feng,^a

Yanwen Ma*a and Wei Huang*ab

^aKey Laboratory for Organic Electronics & Information Displays & Institute of Advanced Materials

(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing

University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu

National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University

(NanjingTech), 30 South Puzhu Road, Nanjing 211816, China.

^{*} Corresponding author. Tel.: +86 25 8586 6533; Tel: +86 25 8586 6396

E-mail address: iamywma@njupt.edu.cn, wei-huang@njtech.edu.cn, iamwhuang@njupt.edu.cn

Fig. S1 Thermal gravimetric analysis (TGA) curve for RuO₂/N-CNTs sample.

Fig. S2 (a) SEM image of the RuO_2/N -CNTs sample; (b) SEM image and (c) TEM image of the pristine N-CNTs sample.

Fig. S3 Electrochemical impedance spectra of the RuO₂/N-CNTs electrode.

Fig. S4 Charge and discharge curves and the corresponding cycling performance of the fabricated wire-shaped Li-O₂ batteries with pristine and bending condition at a current density of 200 mA g_{total}^{-1} , with a limit capacity of 300 mAh g_{total}^{-1}

Fig. S5 The SEM images of the RuO₂/N-CNTs electrode after (a) 1st discharge, (b) 1st charge, (c) 50th discharge, (d) 50th charge, (e) 100th discharge and (f) 100th charge at current density of 200 mA g_{total}^{-1} , with a limit capacity of 600 mAh g_{total}^{-1} .