Electronic Supplementary Information

Room Temperature Formation of Organic-Inorganic Lead Halide Perovskites: Design of Nanostructured and Highly Reactive Intermediates

Hong Zhang, ^a Dan Li, ^c Jiaqi Cheng, ^a Francis Lin, ^b Jian Mao, ^a Alex K.-Y. Jen,^b Michael Grätzel ^d and Wallace C.H. Choy^{*,a}

^a Department of Electrical and Electronic Engineering, The University of Hong Kong, Pok Fu Lam Road, Hong Kong, China. E-mail: chchoy@eee.hku.hk

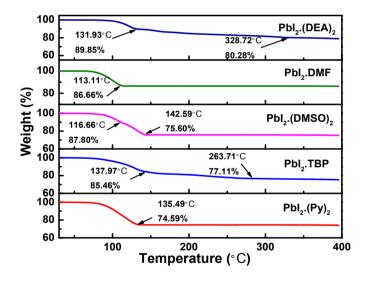
^b Department of Materials Science & Engineering, University of Washington, Seattle, Washington 98195, United States.

^c Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Science, Beijing Jiaotong University, Beijing 100044, China.

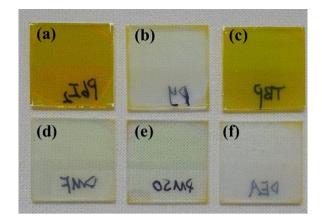
^d Laboratory for Photonics and Interfaces, Institute of Chemical Sciences and Engineering, School of Basic Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.

	van der Waals	Boiling	PbI ₂	PbI ₂ .(L) _x	PbI ₂ /L	Interlayer
Ligand	Volume	point	solubility	conversion	coordination	spacing of
	(cm ³ . mol ⁻¹) ^a	(°C)	(mg/ml) ^b	time (s) ^c	ratio ^d	$PbI_2.(L)_x$ (Å)
-	-	-	-	-	-	6.918 °
ТВР	146.05	197	148	300	1:1	15.152
Ру	79.89	115	<5	100	1:2	8.598
DMF	77.52	153	475	50	1:1	9.196
DMSO	71.43	189	595	140	1:2	8.437
EDA	68.82	116	<5	50	1:2	-

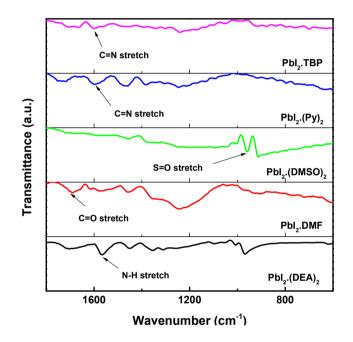
a) http://www.molinspiration.com/cgi-bin/properties. b) The solubility test was conducted at room temperature (25 °C). c) The

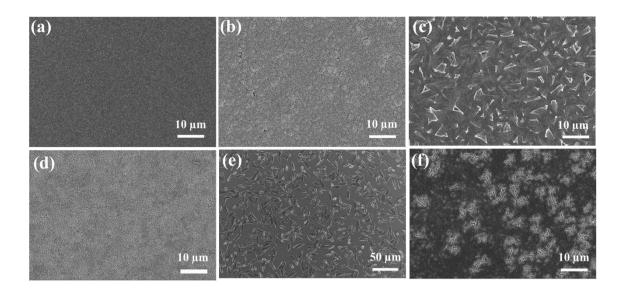

progress of chemical reactions was monitored by UV-vis spectra. d) The data were estimated by TGA. e) The interlayer spacing of

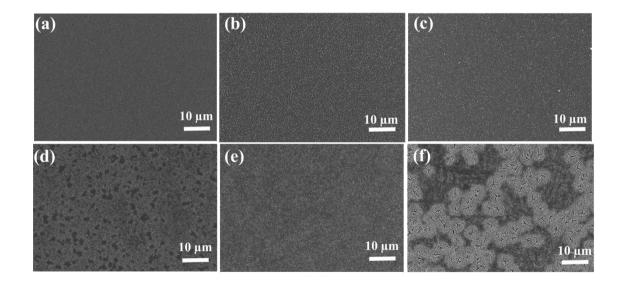
Thermogravimetric analysis (TGA)


The content of L in the PbI₂.(L)_x complexes were estimated by TGA. The TGA results of PbI₂.(L)_x intermediates were shown in **Figure S1**. The PbI₂.(Py)₂ and PbI₂.DMF complexes exhibited a onestep decomposition process with weight-loss of 25.41% and 13.34% at 135.49°C and 113.11°C, respectively. PbI₂.(DMSO)₂ intermediate exhibited a two-step decomposition process with weight-loss of 12.40% at each step and was completely decomposed at 142.59°C. Both PbI₂.(EDA)₂ and PbI₂.TBP intermediate also shown a two-step decomposition process and completely decomposed at 328.72°C and 263.71°C with weight-loss of 19.72% and 23.0%, respectively. The value of *x* is calculated as follows:

$$x = \frac{M_W(PbI_2) \times W_{loss}\%}{M_w(L)(1 - W_{loss}\%)}$$
(1)


where $M_w(PbI_2) = 461$ g/mol, $M_w(L)$ is the molecular weight of ligand, W_{loss} % is refer to the weight proportion of ligand in the PbI₂.(L)_x intermediates. Then, we can get the content of L in the PbI₂.(L)_x intermediates as we summarized in **Table S1**.


Figure S1. Thermogravimetric analysis (TGA) of PbI₂.(L)_x intermediates.


Figure S2. The photographs of $PbI_{2.}(L)_x$ intermediates in which (a) is $PbI_{2.}$ (b) is $PbI_{2.}(Py)_{2.}$ (c) is $PbI_{2.}TBP$, (d) is $PbI_{2.}(DMSO)_{2.}$ (e) is $PbI_{2.}DMF$, and and (f) is $PbI_{2.}(EDA)_{2.}$ film.

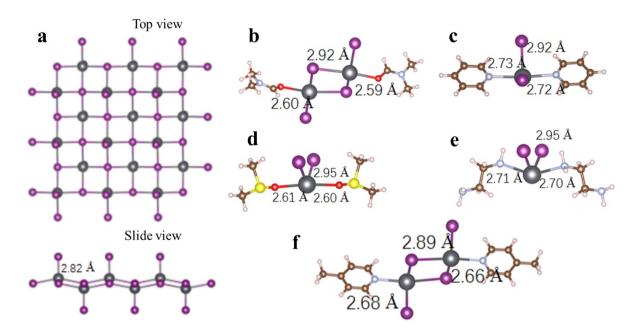

Figure S3. Fourier transform infrared spectrometer (FTIR) of PbI_2 ·(L)_x complexes.

Figure S4. Top-view SEM images of $PbI_2.(L)_x$ intermediates with low magnification in which (a) is untreated PbI_2 , (b) is $PbI_2.(Py)_2$, (c) is $PbI_2.TBP$, (d) is $PbI_2.(DMSO)_2$, (e) is $PbI_2.DMF$ and (f) is $PbI_2.(EDA)_2$ film.

Figure S5. Top-view SEM images of CH₃NH₃PbI₃ films with low magnification from (a) PbI₂, (b) PbI₂.(Py)₂, (c) PbI₂.TBP, (d) PbI₂.(DMSO)₂, and (e) PbI₂.DMF on NiO_x/ITO substrate. (f) Top-view SEM image of PbI₂.(EDA)₂ film after dipping into CH₃NH₃I solution with low magnification.

Figure S6. Crystallographic structures of PbI₂(a), PbI₂.DMF (b), PbI₂.(Py)₂ (c), PbI₂.(DMSO)₂ (d), PbI₂.(EDA)₂ (e), and PbI₂.TBP (f).

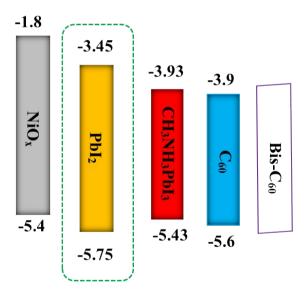


Figure S7. Energy diagram of each material in the PVSC device, with energy levels given in eV.