Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.

Supporting Information

Ultrafast Charge/Discharge Solid-State Thin-Film Supercapacitor via Regulating the Microstructure of Transition-Metal-Oxide

Qiying Lv^{a‡}, Kai Chi^{a‡}, Yan Zhang^a, Fei Xiao^a, Junwu Xiao^a, Shuai Wang^{*a, b}, Kian Ping Loh^c

¹School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China

²State Key Laboratory of Digital Manufacturing Equipment and Technology, Flexible Electronics Research Center (FERC), School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, P.R. China

³Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543

[‡]These authors contributed equally to this work.

*Email: chmsamuel@mail.hust.edu.cn

Fig. S1 FESEM images of NF (a) and NF/rGO (b) electrodes, respectively.

Fig. S2 X-ray diffraction patterns of the samples. **a**) X-ray diffraction patterns of GO, rGO; **b**) X-ray diffraction patterns of rGO/H-Fe₂O₃, rGO/Fe₂O₃.

Fig. S3 The survey spectra for the NF/rGO/Fe₂O₃ (**a**) and NF/rGO/H-Fe₂O₃ (**b**) samples, respectively; **c**) High-resolution XPS spectra of C 1s of the NF/rGO/Fe₂O₃ sample; **d**) High-resolution XPS spectra of C 1s of the NF/rGO/H-Fe₂O₃ sample.

Fig. S4 Electrochemical performance of the 3D NF/rGO/H-Fe₂O₃ electrode. **a)** CV curves at different scan rates in 1.0 M Li₂SO₄ electrolyte; **b)** Areal- and mass-capacitance calculated from CV curves as a function of scan rates, respectively; **c)** Galvanostatic charge-discharge curves at different current densities; **d)** Areal- and mass-capacitance calculated from GCD curves as a function of current densities.

Fig. S5 Electrochemical performance of the 3D ZNs/ADM electrode. **a)** CV curves at different scan rates in 1.0 M Li₂SO₄ electrolyte; **b)** Areal- and mass-capacitance calculated from CV curves as a function of scan rates, respectively; **c)** Galvanostatic charge-discharge curves at different current densities; **d)** Areal- and mass-capacitance calculated from GCD curves as a function of current densities.

Fig. S6 CV curves for ZNs/ADM//NF/rGO/H-Fe₂O₃ asymmetric supercapacitor at different potential windows at scan rates of 1 V/s.

Fig. S7 Electrochemical characterization of asymmetric supercapacitors. CV curves for ZNs/ADM//NF/rGO/H-Fe₂O₃ (a), ZNs/ADM//NF/rGO/Fe₂O₃ (b), ZNs/ADM//NF/H-Fe₂O₃ (c), and ZNs/ADM//NF/rGO (d) asymmetric supercapacitors at scan rates from 1 to 10 or 150 V/s, respectively.

Fig. S8 Areal- (a) and mass-capacitance (b) of ZNs/ADM//NF/rGO/H-Fe₂O₃, ZNs/ADM//NF/rGO/Fe₂O₃, ZNs/ADM//NF/H-Fe₂O₃, and ZNs/ADM//NF/rGO ASCs calculated from CV curves as a function of scan rates.

Fig. S9 a) Areal- and mass-capacitance of ZNs/ADM//NF/rGO/H-Fe₂O₃ calculated from the discharge curves as a function of current density; **b**) Volumetric energy and power densities of ZNs/ADM//NF/rGO/H-Fe₂O₃ calculated from GCD curves as a function of the current densities; **c**) Mass energy and power densities of ZNs/ADM//NF/rGO/H-Fe₂O₃ calculated from GCD curves as a function of the current densities; **c**) mass energy and power densities of ZNs/ADM//NF/rGO/H-Fe₂O₃ calculated from GCD curves as a function of the current densities.

Fig. S10 a) Impedance spectra of the ZNs/ADM//NF/rGO/H-Fe₂O₃ and ZNs/ADM//NF/rGO/Fe₂O₃ ASCs, respectively. The inset shows an enlarged view of the impedance spectra in the high frequency region; **b)** The phase angle versus the frequency of the ZNs/ADM//NF/rGO/H-Fe₂O₃ and ZNs/ADM//NF/rGO/Fe₂O₃ ASCs, respectively.

Supercapacitors	Specific capacitance	Energy density (Max)	Power density (Max)	Ref.
ZNs/ADM//rGO/H-Fe ₂ O ₃	37.88 mF/cm² (1 V/s) 65.31 F/g	0.14 mWh/cm ³	12.30 W/cm ³	This work
ZNs/ADM//rGO/Fe ₂ O ₃	11.19 mF/cm² (1 V/s) 17.22 F/g	0.03 mWh/cm ³	0.13 W/cm ³	This work
ZNs/ADM//H-Fe ₂ O ₃	7.18 mF/cm² (1 V/s) 11.59 F/g	0.02 mWh/cm ³	0.61 W/cm ³	This work
ZNs/ADM//rGO	4.25 mF/cm² (1 V/s) 15.95 F/g	0.01 mWh/cm ³	0.28 W/cm ³	This work
Ta ₂ O ₅ -NTs/C-Fe ₂ O ₃ -SC	4.6 mF/cm ² (1 V/s)			[64]
LSG-EC	3.67 mF/cm² (1 A/g) 4.04 mF/cm² (1 A/g, in 1.0 M H₂SO₄)			[8]
EG/PH1000 MSC	5.40 mF/cm ² (1 mV/s)			[11]
rGO-MSC	0.54 mF/cm ² (500 mV/s)			[65]
MPG-MSC	80.7 µF/cm ² (10 mV/s)			[14]
BNC/CNT-SC	18.8 mF/cm ² (100 mV/s)			[Ref-S1]
LSG-EC		~0.07 mWh/cm ³	~2.1 W/cm ³	[8]
TiN-SC		~0.05 mWh/cm ³	~0.3 W/cm ³	[66]
3D-graphene-CNTs (Na ₂ SO ₄)		~0.16 mWh/cm ³	~30 W/cm ³	[67]
H-ZnO@ZnO-doped MnO ₂		~0.04 mWh/cm ³	~20 W/cm ³	[68]
SiC NW-SC		~0.007 mWh/cm ³	~5.95 W/cm ³	[24]
LSG-sandwich (PVA-H ₂ SO ₄)		~0.105 mWh/cm ³	~6 W/cm ³	[13]
63V/220µF-EC		~0.07 mWh/cm ³	~300 W/cm ³	[19]
3V/300µF-AI EC		~0.001 mWh/cm3	~48 W/cm ³	[19]
NDCNTs/ANPDM//Fe2O3-ASC		0.097 mWh/cm ³	28 mW/cm ³	[42]
HZM-SC		0.032 mWh/cm ³	~18 mW/cm ³	[68]
TiO ₂ @PPy-SC		0.013 mWh/cm ³	0.147 W/cm ³	[Ref-S2]
TiO ₂ @C-based-SCs		0.011 mWh/cm ³	0.032 W/cm ³	[Ref-S3]

Table S1. Comparison results on the basis of ZNs/ADM (positive)//rGO/H-Fe₂O₃ (negative) asymmetric supercapacitor and earlier reports.

References

[S1] Y. J. Kang, S.-J. Chun, S.-S. Lee, B.-Y. Kim, J. H. Kim, H. Chung, S.-Y. Lee, W. Kim, ACS Nano 2012, 6, 6400.
[S2] M. Yu, Y. Zeng, C. Zhang, X. Lu, C. Zeng, C. Yao, Y. Yang, Y. Tong, Nanoscale 2013, 5, 10806.
[S3] H. Zheng, T. Zhai, M. Yu, S. Xie, C. Liang, W. Zhao, S. C. I. Wang, Z. Zhang, X. J. Lu, Mater. Chem. C 2013, 1, 225.