Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Electronic Supplementary Information

Controlled Synthesis of Mo-doped Ni₃S₂ Nano-rod: an Efficient and Stable Electro-catalyst for Water Splitting

Zheng Cui¹, Yuancai Ge¹, Hang Chu¹, Robert Baines², Pei Dong², Jianhua Tang¹,

Yang Yang¹, Pulickel M. Ajayan², Mingxin Ye^{1*}, Jianfeng Shen^{1*}

¹ Institute of Special Materials and Technology, Fudan University, Shanghai, 200433,

P. R. China

² Department of Materials Science and NanoEngineering, Rice University, 6100 Main Street, Houston, TX 77005, USA

Figure S1. Digital images of electrode surface of 200-SMN/NF (a) before and (b) after hydrothermal process.

Figure S1 shows digital images of the Ni foam surface before and after Modoped Ni_3S_2 growth through the one-step hydrothermal method. The original color of the Ni foam electrode is brown (Figure S1a); once the Mo-doped Ni_3S_2 nano-rod arrays grow on the Ni foam electrode, the foam surface becomes completely black (Figure S1b). This change in color indicates the complete and uniform formation of Mo-doped Ni_3S_2 on the Ni foam.

Figure S3. Raman spectrum of 180-AMN/NF, 200-AMN/NF, 220-AMN/NF

Figure S4. Raman spectrum of 180-SMN/NF (a), 200-SMN/NF (b), 220-SMN/NF (c), Ni_3S_2/NF (d)

In **Figure S3**, besides the Raman resonance bands related to Ni_3S_2 , three Raman resonance bands at 820, 891 and 939 cm⁻¹, ascribed to the MoO_x structure are evident. However, in **Figure S4**, the three Raman resonance bands at 820, 891 and 939 cm⁻¹ are not visible. These results, together with the HER and OER results, indicate that Mo-doped Ni_3S_2 using sodium molybdate as Mo source presents superior HER and OER activities to the Mo-doped Ni_3S_2 using ammonium molybdate as Mo source, because ammonium molybdate lead to the formation of MoO_x .[1]

Figure S5. SEM images and EDX-mapping of Ni_3S_2/NF

Figure S6. EDX spectrum of Ni_3S_2/NF

Figure S7. SEM images and EDX-mapping of 180-AMN/NF

Figure S8. EDX spectrum of 180-AMN/NF

Figure S9. SEM images and EDX-mapping of 200-AMN/NF.

Figure S10. EDX spectrum of 200-AMN/NF

Figure S11. Nyquist plots of, 180-SMN/NF, 200-SMN/NF, 220-SMN/NF, 180-AMN/NF, 220-AMN/NF, Ni₃S₂/NF, and bare Ni foam electrodes recorded at an applied potential of -1.2 V with a frequency range of 10 kHz to 10 mHz in 1 m KOH

References:

[1]. Wu, Y., et al., Overall Water Splitting Catalyzed Efficiently by an Ultrathin Nanosheet-Built, Hollow Ni₃S₂-Based Electrocatalyst. Advanced Functional Materials, 2016. 26(27) 4839-4847.