Tuning chemical compositions of bimetallic AuPd catalysts for selective catalytic hydrogenation of halogenated quinolines

Sai Zhang,^a Zhaoming Xia,^a Ting Ni,^a Huan Zhang,^a Chao Wu^a and Yongquan Qu*^a

^a Frontier Institute of Science and Technology and State Key Laboratory for

Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China

* *E-mail: yongquan@mail.xjtu.edu.cn*

Figure S1. Summary of the adsorption configuration of 6-chloroquinoline molecule on Pd (111) crystal face: (a) Tilted configuration; (b) Flat configuration.

Figure S2. Summary of the adsorption configuration of 6-chloroquinoline molecule on Pd (111)crystal face: (a) Flat configuration; (b) Tilted configuration.

Figure S3. Structure characterizations of nanorods CeO₂. (a) Dark field TEM image and (b) XRD spectrum of nanorods CeO₂.

Figure S4. UV-vis absorption spectra of as-synthesized CeO_2 nanorods and the reduced CeO_2 nanorods by ascorbic acid.

Figure S5. TEM image of CeO_2 nanorods after the chemical reduction by ascorbic acid.

Figure S6. TEM images of (a) $Au_{0.93}Pd_{0.07}/CNR$, (b) $Au_{0.75}Pd_{0.25}/CNR$, (c) $Au_{0.4}Pd_{0.6}/CNR$, (d) $Au_{0.25}Pd_{0.75}/CNR$ catalysts. Size distributions of all catalyst are shown in inset.

Figure S7. The Au/CNR catalyst: (a) TEM image, (b) HR-TEM image and (c) Size distribution of Au particles. The Pd/CNR catalyst: (d) TEM image, (e) HR-TEM image and (f) Size distribution of Pd particles.

Figure S8. XPS spectrum of (a) Pd and (b) Au for various Au_xPd_{1-x}/CNR catalysts.

Figure S9. Time course of conversion of 6-chloroquinoline catalyzed by the Au/CNR catalyst. **Reaction conditions**: 6-chloroquinoline (0.2 mmol), Au/CNR catalysts (5 mg), toluene (2 mL), 100 °C and hydrogen pressure (2 MPa). Obviously, the Au/CNR catalysts exhibited no catalytic activity for hydrogenation of 6-chloroquinoline.

Figure S10. Catalytic performance of the Lindlar catalyst: Time course of conversion of 6-chloroquinoline (1) and selectivity of 6-chloro-1,2,3,4-tetrahydroquinoline (2). Reaction conditions: 0.2 mmol of 6-chloroquinoline, 10 mg of catalyst, 2 mL of toluene, 100 °C and 2 MPa H₂ pressure.

Figure S11. TEM image of the spent $Au_{0.9}Pd_{0.1}/CNR$ catalysts.

Entry	Catalyst	Substrates	Products	Selectivity/yield (%)
1	Rh nanopatrticles	F	F	73 ¹
2	Au/TiO ₂	CI	CI	100 ²
3	<i>N</i> -graphene modified cobalt nanoparticles	CI	CI	81 ³
4	Co nanoparticles	F	F	0 4

 Table S1. Summary of the selectivity or yield for the hydrogenation of functionalized quinolines in previously reported.

Table S2. Optimization of the reaction conditions for hydrogenation of 6-chloroquinoline.

$ \begin{array}{c} Cl \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $												
	1		2 ^H	3	4 ^H							
Entur	Temperature	Pressure	Salvant	Time	Con.	Sel. (%)						
Entry	(°C)	(MPa)	Solvent	(h)	(%)	2	3	4				
1	90	2	H_2O	3	60.5	80.1	46.9	23.2				
2	90	2	CH ₃ CN	3	19.5	53.4	41.5	5				
3	90	2	THF	3	20.9	86.1	11.1	2.8				
4	90	2	n-hexane	3	66.9	78.9	12.3	7.9				
5	90	2	Toluene	3	74.3	82.6	13.6	3.8				
6	100	2	Toluene	3	81.0	89.6	5.6	7.8				
7	100	3	Toluene	3	93.8	84.0	9.1	6.9				
8	100	1	Toluene	3	65.6	89.9	6.2	6.9				

 $\label{eq:Reaction conditions: Au_{0.9}Pd_{0.1}/CNR~(5~mg),~6-chloroquinoline~(0.2~mmol)~and~solvent~(2~mL).$

References

Karakulina, A.; Gopakumar, A.; Akcok, I.; Roulier, B. L.; LaGrange, T.;
 Katsyuba, S. A.; Das, S.; Dyson, P. J. Angew. Chem. Int. Ed. 2016, 55, 292.

(2) Ren, D.; He, L.; Yu, L.; Ding, R. S.; Liu, Y. M.; Cao, Y.; He, H. Y.; Fan, K.
N. J. Am. Chem. Soc. 2012, 134, 17592.

(3) Chen, F.; Surkus, A. E.; He, L.; Pohl, M. M.; Radnik, J.; Topf, C.; Junge, K.;Beller, M. J. Am. Chem. Soc. 2015, 137, 11718.

(4) Nador, F.; Moglie, Y.; Vitale, C.; Yus, M.; Alonso, F.; Radivoy, G. Tetrahedron 2010, 66, 4318.