Electronic Supplementary Information

Unusual Formation of Tetragonal Microstructure from Nitrogen-Doped Carbon Nanocapsules with Cobalt Nanocores as a Bi-Functional Oxygen Electrocatalyst

Enlai Hu,^{b,1} Jiqiang Ning,^{c,1} Bin He,^b Zhipeng Li,^b Changcheng Zheng,^d Yijun Zhong,^a Ziyang Zhang,^c Yong Hu^{*ab}

^aHangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou 311231, China.

^bInstitute of Physical Chemistry, Zhejiang Normal University, Jinhua 321004, China.

°Vacuum Interconnected Nanotech Workstation, Suzhou Institute of Nano-Tech and Nano-Bionics,

Chinese Academy of Sciences, Suzhou 215123, China.

^dMathematics and Physics Centre, Department of Mathematical Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.

*Corresponding author. Y. Hu. email: yonghu@zjnu.edu.cn.

¹These authors contributed equally to this work.

Fig. S1 SEM images of the as-prepared samples: (a) and (b) Co-N-C-0.1. (c) and (d) Co-N-C-0.6.

Fig. S2 XPS analysis results of the as-prepared samples: (a) XPS spectra. (b) Elemental composition (atomic percentage) obtained from XPS analysis.

Fig. S3 N₂ adsorption-desorption isotherms of the as-prepared samples: (a) Co-N-C-0.1, (b) Co-N-C-0.6.

Fig. S4 SEM images of the as-prepared sample Co-N-C-0.4 after annealing at different temperatures: (a) and (b) at $300 \ ^{\circ}$ C. (c) and (d) at $400 \ ^{\circ}$ C. (e) and (f) at $500 \ ^{\circ}$ C.

Fig. S5 SEM image of the as-prepared $g-C_3N_4$.

Fig. S6 TGA curve of the mixture of 0.1 g $g-C_3N_4$ and 0.4 g Co(CH₃COO)₂•4H₂O.

Fig. S7 XRD patterns of the Co-N-C-0.4 obtained at different temperature.

Fig. S8 SEM images of the as-prepared samples: (a) Co-N-C-0.1. (b) Co-N-C-0.4 without acid leaching treatment.

Fig. S9 TEM images of the as-prepared samples: (a) Co-N-C-0.1. (b) Co-N-C-0.6.

Fig. S10 CV profiles of the Pt/C in O_2 (balck curve) and N_2 (red curve) saturated 0.1 M KOH solution at 1600 rpm with a scan rate of 20 mV s⁻¹.

Fig. S11 LSV results of the as-prepared Co-N-C-0.4 catalyst with different loading amount. (in O_2 saturated 0.1 M KOH solution at a rotation rate of 1600 rpm)

Fig. S12 (a) and (c) LSV results of Co-N-C-0.1 (a) and Co-N-C-0.6 (c) at different rotation rates. (b) and (d) the corresponding K-L plots.

Fig. S13 LSV results of the as-prepared samples. (in O_2 saturated 0.1 M KOH solution at a rotation rate of 1600 rpm)

Fig. S14 (a) LSV results of the commercial Pt/C at different rotation rates. (b) corresponding K-L plots.

Fig. S15 Chronoamperometric response at 0.6 V in O_2 saturated 0.1 M KOH solution with the adding of 50 ml methanol.

Fig. S16 LSV curves of the as-prepared Co-N-C-0.4 obtained at different temperatures. (in O_2 saturated 0.1 M KOH solution at a rotation rate of 1600 rpm).

Fig. S17 LSV results of the as-prepared Co-N-C-0.4 catalyst with different loading amount. (in O_2 saturated 0.1 M KOH solution at a rotation rate of 1600 rpm)

Fig. S18 LSV results of the as-prepared catalyst. (in O₂ saturated 0.1 M KOH solution at a rotation rate of 1600 rpm)

Catalysts	Loading (mg cm ⁻²)	Onset potential (V)	Half-wave potential (V)	n	References
N/Co-doped PCP//NRGO	0.714	0.97	0.86	3.9	<i>Adv. Funct. Mater.</i> 2015 , 25, 872
N/Co-doped PCP-RGO	0.714	0.94	N/A	3.3	<i>Adv. Funct. Mater.</i> 2015 , 25, 872
Fe ₃ C/C	0.6	1.05	0.83	3.9	Angew. Chem. Int. Ed. 2014 , 53, 3675
FeN_x/C catalyst	0.6	0.94	0.82	N/A	J. Am. Chem.Soc. 2014, 136, 10882
Co ₃ O ₄ /N-rmGO	0.17	0.88	0.83	3.9	<i>Nat. Mater.</i> 2011 ,10, 780
Co@NG	1.08	0.9	0.83	3.9	<i>Adv. Funct. Mater.</i> 2016 , 26, 4397
Co/N-CNTs	0.2	0.94	0.84	3.9	J. Mater. Chem. A, 2016, 4, 1694
Fe/N-CNTs	0.2	0.96	0.82	3.8	J. Mater. Chem. A, 2016, 4, 1694
Co-N-C	0.283	0.98	0.87	4.0	<i>ACS Catal.</i> 2015 , 5, 7068
Fe-N-CC	0.1	0.94	0.83	3.7	ACS Nano, 2016 , 10, 5922
LDH@ZIF-67-800	0.2	0.94	0.83	4.0	<i>Adv. Mater.</i> 2016 , <i>28</i> , 2337
Co@Co ₃ O ₄ @C-CM	0.1	0.93	0.81	3.8	Energy Environ. Sci. 2015, 8, 568
N-Carbon nanotube frameworks	0.2	0.97	0.87	3.97	<i>Nat. Energy.</i> 2016 , 1, 15006.
N,P-codoped ordered mesoporous carbon	0.3	0.95	0.82	3.7	Angew. Chem.Int. Ed. 2015 ,54,9230
Co _x Zn _{100-x} -NPCs	0.1	0.9	N/A	3.9	ACS Appl. Mater. Interfaces. 2015 , 7, 4048
Co-N-C	0.25	0.98	0.84	3.9	This work

 Table S1 Comparison of various carbon based materials for ORR.

Catalysts	Loading (mg cm ⁻²)	Onset Potential (V)	Tafel (mV decade ⁻¹)	Potential (V) @ 10 mA cm ⁻²	References
N/Co-doped MOF derived carbon/NRGO	0.36	N/A	292	1.66	<i>Adv. Funct. Mater.</i> 2015 , 25, 872
ZIF-derived carbon	0.36	N/A	393	1.75	<i>Adv. Funct. Mater.</i> 2015 , 25, 872
Ni-Co mixed oxide porous cubes	N/A	N/A	59	1.66	<i>Adv. Mater.</i> 2016, 28, 4601
Mn ₃ O ₄ /CoSe ₂	0.2	N/A	49	1.68	J. Am. Chem. Soc 2012 , 134, 2930
N- CNT/graphen e	0.24	1.52	82	1.63	Small 2014, 10, 2251
N, O-dual dopedCNTs	1.75	1.55	141	$1.8 @ 14.8 mA cm^{-2}$	<i>Adv. Mater.</i> 2014 , 26, 2925
N-Carbon nanotube frameworks	0.2	1.47	93	1.60	<i>Nat. Energy.</i> 2016 , 1, 15006.
Co(OH) ₂	0.1	N/A	62	1.68	ACS Appl. Mater. Interfaces 2015, 7, 12930
Co-N-C	0.4	1.55	110	1.62	This work

 Table S2 Comparison of various carbon based materials for OER.