Supporting information:

Reduced Graphene Oxide-Encapsulated

Phosphorus/Carbon Composite as a Promising Anode

Material for High-Performance Sodium-Ion Batteries

Gi-Hyeok Lee^a, Mi Ru Jo^a, Kai Zhang^a, Yong-Mook Kang^{*,a}

^a Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 100-715, Republic

of Korea.

* Corresponding author E-mail: Yong-Mook Kang; <u>dake1234@dongguk.edu</u>

Fig. S1 SEM images of P/C@GO in different magnifications (a) x50,000 (b) x10,000

Fig. S2 Energy dispersive X-ray spectroscopy (EDS) images of P/C composite and P/C@rGO. (a, d) SEM images. (b, e) EDS images of Phosphorus. (c, f) EDS images of Carbon.

Fig. S3 Raman spectrum of P/C@rGO

Fig. S4 SEM images of P/C@rGO with different rGO concentrations; (a) 3.0 mg/100 mL, (b) 1.5 mg/100 mL (optimum), (c) 0.5 mg/100 mL.

Fig. S5 D-spacing measurement of rGO coating on P/C@rGO from HR-TEM image.

Fig. S6 Thermogravimetric analysis (TGA) of (a) P/C composite and (b) P/C@rGO.

Fig. S7 dQ/dV analysis of (a) P/C composite and (b) P/C@rGO during initial 10 cycles.

Fig. S8 Cyclic performance of P/C@rGO at a high current density of 0.5 A g⁻¹.

	(Ω sq ⁻¹)	(Ω sq ⁻)
1	14	3
2	13	2
3	17	7
4	24	8
Average	17	5

Fig. S9 Sheet resistance comparison between P/C composite and P/C@rGO

$$Q_{P1} = \frac{Q_{P/C@rGO} - Q_{C} * W_{C}}{W_{P1}}$$
(1)

$$Q_{P2} = \frac{Q_{P/C composite} - Q_{C} * W_{C}}{W_{P2}}$$
(2)

 Q_{P1} ; Capacity contribution of phosphorus in P/C@rGO Q_{P2} ; Capacity contribution of phosphorus in P/C composite W_{P1} ; Weight ratio of phosphorus in P/C@rGO W_{P2} ; Weight ratio of phosphorus in P/C composite Q_C ; Specific capacity of Super P in P/C composite W_C ; Weight ratio of Super P in P/C composite

Table S1 Calculation formulae for capacity normalization

Active materials	Reversible Capacity (mAh g _P ·1) / Retention rate	Reversible capacity (mAh $g_{P/C}$ -1)	Reference
P/Super P	1142 at 140th cycle (100 mA g ⁻¹) / 56%	800 at 140th cycle (100 mA g ⁻¹)	11
P/CNT	800 at 20th cycle (60 mA g-1) / 28%	500 at 20th cycle (60 mA g ⁻¹)	17
P/Super P	1800 at 30th cycle (50 mA g-1) / 93%	1260 at 30th cycle (50 mA g ⁻¹)	18
P/Graphene stack	1700 at 60th cycle (100 mA g ⁻¹) / 95%	-	19
P/3D-C	2500 at 160th cycle (200 mA g ⁻¹) / 88%	900 at 160th cycle (200 mA g ⁻¹)	20
P/C@rGO	2015 at 100th cycle (100 mA g ⁻¹) / 95%	500 at 100th cycle (100 mA g ⁻¹)	This work

 Table S2 Comparison of reversible capacities of different P electrodes for SIBs.

Fig. S11 Deconvolution of C 1s spectra after initial discharge to 0.01 V

Fig. S12 O1s XPS spectra of (a) P/C composite and (b) P/C@rGO during 1st cycle.

Fig. S13 Ex-situ FT-IR spectra of (a) P/C composite and (b) P/C@rGO.

Fig. S14 Cross section SEM images of P/C composite and P/C@rGO electrodes during cycling.