Zinc-modulated Fe-Co Prussian blue analogues with well-controlled

morphology for cesium adsorption

Jiayi Liu,^{a,b} Xuning Li,^{a,b} Alexandre I. Rykov,^a Qiaohui Fan,*c Wei Xu,^d Weimin Cong,^e

Changzi Jin,^a Hailian Tang,^{a,b} Kaixin Zhu,^{a,b} Ayyakannu Sundaram Ganeshraja,^a Rile Ge,^a

Xiaodong Wang,^e and Junhu Wang*a

^aMössbauer Effect Data Center, Dalian Institute of Chemical Physics, Chinese Academy of

Sciences, Dalian 116023, China. *E-mail: wangjh@dicp.ac.cn

^bUniversity of Chinese Academy of Sciences, Beijing 100049, China

°Key Laboratory of Petroleum Resources, Gansu Province / CAS Key Laboratory of Petroleum

Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences,

Lanzhou 730000, China. *E-mail: fanqh@lzb.ac.cn

^dBeijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

^eState Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences

Fig. S1 N₂ adsorption/desorption isotherm of Fe_xZn_{1-x}-Co PBAs

Fig. S2 TG and DSC curves of Zn-Co PBA

Fig. S3 Elemental mappings of Zn-Co PBA

Fig. S4 Comparison of XRD patterns of the series of Fe_xZn_{1-x} -Co PBAs before and after adsorption

Fig. S5 The Rietveld structural refinement result of Zn-Co PBA (XRD powder patterns observed in red, calculated in black and difference profile in blue; a = 10.137 Å, space group Fm-3m, $R_{wp} = 15.8\%$, $R_{exp} = 7.93\%$. Inset: Crystal structure model of Zn-Co PBA, the water molecules are omitted.)

Tuble ST DET sufface area, pore size and interopore volume of the re _x 2m _{1-x} correction						
material	Fe-Co	Fe _{0.8} Zn _{0.2} -Co	Fe _{0.6} Zn _{0.4} -Co	Fe _{0.4} Zn _{0.6} -Co	Fe _{0.2} Zn _{0.8} -Co	Zn-Co
$BET(m^2 g^{-1})$	569.49	754.65	697.19	604.25	549.64	507.71
H-K median pore width (nm)	0.6140	0.6139	0.6087	0.6106	0.6117	0.6096
micropore volume (cm ³ g ⁻¹)	0.1867	0.2753	0.2554	0.2192	0.2089	0.1907

Table S1 BET surface area, pore size and micropore volume of the Fe_xZn_{1-x} -Co PBAs

Langmuir model			Freundlich model		
$k_L(L mg^{-1})$	$\overline{Q_m (mmol g^{-1})}$	R ²	$K_{\rm F} (\rm L mg^{-1})$	n	
23.34	1.92	0.96	1.80	5.26	0.87

Table S2 Isotherm parameters for the adsorption of Cs^+ using Zn-Co PBA

Adsorbent	pH of CsCl solution (0.001M)	pH after adsorption	
Fe-Co		5.28	
Fe _{0.8} Zn _{0.2} -Co		5.38	
Fe _{0.6} Zn _{0.4} -Co	674	5.57	
Fe _{0.4} Zn _{0.6} -Co	0.74	5.37	
Fe _{0.2} Zn _{0.8} -Co		5.26	
Zn-Co		5.44	

Table S3 pH of the solution before and after adsorption

Wyckoff	Atom	X	У	Z	Occ	U, Å ²
4a	Со	0	0	0	0.47	0.035(12)
4b	Zn	0.5	0.5	0.5	1	0.28(2)
8c	O ₁	0.25	0.25	0.25	0.45	0.45(18)
8c	K	0.25	0.25	0.25	0.06	0.45(18)
24e	С	0.19	0	0	0.47	0.4(8)
24e	Ν	0.31	0	0	0.47	0.12(7)
24e	O ₂	0.21	0	0	0.52	0.24(13)

 Table S4 Fractional atomic coordinates and occupancies of Zn-Co PBA.

O1: crystal water, O2: coordinated water.

Comula	Daramatar		Fe(II) HS		
Sample	Parameter	Fe(III) HS	site 1	site 2	site 3
	IS (mm s ⁻¹)	0.33	1.11	1.11	1.13
Fe-Co (before)	QS (mm s ⁻¹)	0.72	0.88	1.52	1.97
	Area (%)	26.4	19.9	30.9	22.8
	IS (mm s ⁻¹)	0.33	1.1	1.12	1.13
Fe-Co (after)	QS (mm s ⁻¹)	1.05	0.92	1.53	2.08
	Area (%)	47.7	15.4	21.8	15.1
	IS (mm s ⁻¹)	0.33	1.23	1.15	1.1
Fe _{0.6} Zn _{0.4} -Co (before)	QS (mm s ⁻¹)	0.72	0.6	1.21	1.89
	Area (%)	44	3.2	21.3	31.5
	IS (mm s ⁻¹)	0.33	1.23	1.15	1.1
Fe _{0.6} Zn _{0.4} -Co (after)	QS (mm s ⁻¹)	0.72	0.55	1.9	2.06
	Area (%)	60.5	6.1	18.2	15.2

Table S5 Room temperature $^{57}\mbox{Fe}$ Mössbauer parameters of Fe-Co and Fe_{0.6}Zn_{0.4}-Co PBAs before and after sorption

M ^A -M ^B PBA	Co-Fe	Cu-Fe	Mn-Co	Ni-Co
C _M ^A (ppm)	8.139	10.25	9.579	19.33
C _M ^B (ppm)	0.0588	0.3731	1.868	0.9338

Table S6 Concentration of M^A and M^B released

M^A-M^B PBA represents M^A₃[M^B(CN)₆]₂