Electronic Supplementary Information (ESI)

Redox-active poly(ionic liquid)s as active materials in energy storage applications

G. Hernández,^a M. Işik,^a D. Mantione,^a A. Pendashteh,^b P. Navalpotro,^b S. Devaraj,^c R. Marcilla^b and D. Mecerreyes^{a,d}

^a POLYMAT, University of the Basque Country UPV/EHU, Joxe Mari Korta Centre, Avda. Tolosa 72, 20018, Donostia-San Sebastián, Spain.

^b Electrochemical Processes Unit, IMDEA Energy Institute, Parque Tecnológico de Móstoles, Avda. Ramón de la Sagra, 3, 28935 Móstoles, Madrid, Spain.

^c CIC EnergiGUNE, Alava Technology Park, Albert Einstein 48, 01510, Miñano, Alava, Spain.

^d Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain.

Fig. S 1 ¹H NMR spectra of the pyrrolidinium-based poly(ionic liquid)s with 25 mol% of redoxactive groups. PDADMA-75TFSI-25AQ (on the left) and PDADMA-75TFSI-25TEMPO (on the right).

Fig. S 2 ¹⁹F NMR spectra of the copolymers combining redox-active and TFSI anions.

Fig. S 3 Quantitative ¹³C NMR spectrum of PDADMA-90TFSI-10TEMPO.

Fig. S 4 Quantitative ¹³C NMR spectrum of PDADMA-75TFSI-25TEMPO.

Fig. S 5 FTIR-ATR spectra of the pyrrolidinium-based poly(ionic liquid)s. (a) PDADMA-100TFSI (grey), PDADMA-75TFSI-25AQ (red) and PDADMA-100AQ (black). (b) PDADMA-100TFSI (grey), PDADMA-75TFSI-25TEMPO (green) and PDADMA-100TEMPO (orange).

Fig. S 6 TGA curves for redox-active poly(ionic liquid)s: (a) PDADMA-100TFSI (grey), PDADMA-75TFSI-25AQ (red) and PDADMA-100AQ (black). (b) PDADMA-100TFSI (grey), PDADMA-75TFSI-25TEMPO (green) and PDADMA-100TEMPO (orange).