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Experimental

Synthesis of Ni3[Fe(CN)6]2 prussian blue analogue (PBA) nanocube precursors and 

mesoporous NiO/NiFe2O4 multi-composite hollow nanocages (NCs). 

We synthesized uniform Ni3[Fe(CN)6]2 PBA nanocube precursors by modifying an established 

procedure.1 In a typical synthesis, we dissolved 0.1374 mmol of Nickel (II) acetate tetrahydrate 

(97 %, Ni(CH3COO)2·4H2O, DAEJUNG, Korea), 0.7174 mmol of Sodium 

dodecylbenzenesulfonate (SDBS) (technical grade (Aldrich), C18H29NaO3S, Sigma-Aldrich, USA) 

in 25 ml of D. I. water to form solution A. We dissolved 0.1502 mmol of Potassium 

hexacyanoferrate (III) (ACS reagent, ≥99.0 %, K3[Fe(CN)6], Sigma-Aldrich, USA) in 25 ml of D. 

I. water to form solution B. Solutions A and B were heated at 60 °C oil bath with stirring for 1 h, 

respectively. Then solutions A and B were mixed and stirred in 60 °C oil bath for 3 h. After 

collection by centrifugation and washing with ethanol several times, the precipitates were dried in 

60 °C oven overnight. Using the hydrothermal method, the prepared monodispersed Ni3[Fe(CN)6]2 

PBA nanocube precursors were calcined in air at 500 ~ 700 °C with a heating rate of 5 °C min-1 

for 1 hour to transform them into mesoporous NiO/NiFe2O4 multi-composite hollow NCs. In 

addition, pure NiFe2O4 and NiO/NiFe2O4 nanoparticles were prepared at 500 °C for 5 h in Air 

atmosphere by using liquid phase precursor method.2

Materials characterization. 

We observed the surface morphology of the Ni3[Fe(CN)6]2 PBA nanocube precursors and 

mesoporous NiO/NiFe2O4 multi-composite hollow CNs by field-emission scanning electron 

microscopy (FESEM, JEOL 7500F). We carried out high-resolution transmission electron 
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microscopy and energy dispersive spectroscopy (EDS) mapping using a JEM2100F with an 

accelerating voltage of 200 kV. The crystallinity and structure of the Ni3[Fe(CN)6]2 PBA nanocube 

precursors and mesoporous NiO/NiFe2O4 multi-composite hollow CNs were examined by powder 

X-ray diffraction (Bruker D8 FOCUS) using CuKα radiation. X-ray photoelectron spectroscopy 

(XPS) and Fourier transform infrared (FTIR, Bruker IFS-66/S) spectroscopy were employed to 

analyze the chemical bonding within the materials. Thermogravimetry and differential thermal 

analysis (TG-DTA, Seiko Exstar) was performed in air at a heating rate of 5 °C min-1 from 30 to 

1000 °C, to confirm the reaction of Ni3[Fe(CN)6]2 PBA nanocubes and the crystallization of 

NiO/NiFe2O4 multi-composite. We measured the Brunauer–Emmett–Teller specific surface areas 

and the Barrett–Joyner–Halenda pore size distributions of the samples on the surface area by using 

a pore size analyzer (Autosorb-iQ 2ST/MP) at 77 K with N2 gas.

Electrochemical measurements. 

All electrochemical experiments were conducted on a CHI 660D (ALS, Japan) electrochemistry 

workstation using a three-electrode cell. SCE (Saturated Calomel Electrode) was used as the 

reference electrode, and graphite rod was used as the counter electrode. The working electrode 

was prepared by mixing NiO/NiFe2O4 powder, carbon black (Vulcan XC 72R) as a conductive 

agent, and nafion as a binder (8:1:1 in weight ratio) in 1 mL of 2:1 v/v water/isopropanol mixed 

solvent. After sonication for 30 min, the slurry was coated onto carbon paper (1 cm × 1 cm, Toray, 

Japan), and dried at room temperature. The catalyst loading for NiO/NiFe2O4 was about 1 mg cm-2. 

The polarization curves were obtained in 1 M KOH with a scan rate of 5 mV s-1 at room 

temperature. All potentials were iR-compensated and converted to a reversible hydrogen electrode 
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(RHE) scale via calibration. And the presented current density was normalized to the geometric 

surface area.
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Fig. S1. FESEM images of synthesized Ni3[Fe(CN)6]2 PBA nanocubes; concentration of SDBS 

(a) 0.3587 and (b) 1.4348 mmol at 60 °C, temperature (c) 50 and  (d) 70 °C with concentration of 

SDBS 0.7174 mmol. 
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Fig. S2. FTIR spectra of the as-prepared Ni3[Fe(CN)6]2 PBA nanocubes and mesoporous 

NiO/NiFe2O4 multi-composite hollow NCs.
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Fig. S3. TG-DTA curves of Ni3[Fe(CN)6]2 PBA nanocubes.
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Fig. S4. (a) XPS survey scan of NiO/NiFe2O4 multi-composite hollow NCs after 1 h of calcination 

in air at 500 °C.  XPS spectra of (b) Ni 2p, (c) Fe 2p, and (d) O 1s of NiO/NiFe2O4 multi-composite 

hollow NCs sample.
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Fig. S5. (a) and (b) FESEM images of NiO/NiFe2O4 multi-composite hollow NCs after 1 h of 

calcination in air at 600 and 700 °C. (c) TEM and (d) HRTEM images (the inset shows the 

corresponding selective area diffraction pattern) of mesoporous NiO/NiFe2O4 multi-composite 

hollow NCs after 1 h of calcination in air at 600 °C. (e)-(h) STEM-EDS of mesoporous 

NiO/NiFe2O4 multi-composite hollow NCs.
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Fig. S6. Nitrogen adsorption-desorption isotherms and pore size distribution of mesoporous 

NiO/NiFe2O4 multi-composite hollow NCs; (a) 500 °C, (b) 600 °C, and (c) 700 °C for 1 hour at 

air atmosphere.
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Fig. S7. The EDS spectra of the as-prepared (a) Ni3[Fe(CN)6]2 PBA nanocubes and (b) 

mesoporous NiO/NiFe2O4 multi-composite hollow NCs after calcined at 500 °C for 1 hour. 
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Fig. S8. Comparison of electrocatalytic properties of NiO/NiFe2O4 multi-composite hollow NCs 

(500, 600, and 700 °C), and pristine substrate. OER polarization curves recorded in 1 M KOH 

solution at a scan rate of 5 mV s-1 without iR compensation. 
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Table S1. Comparison of electrocatalytic properties of NiO/NiFe2O4 multi-composite hollow 

NCs (500, 600, and 700 °C), pure NiFe2O4, NiO and mixed NiO/NiFe2O4. 

Sample Overpotential (mV) 

at 10 mA cm-2

Tafel polt (mV dec-1)

NiO/NiFe2O4 multi-

composite hollow NCs (500 

°C)

303 58.5

NiO/NiFe2O4 multi-

composite hollow NCs (600 

°C)

322 64.9

NiO/NiFe2O4 multi-

composite hollow NCs (700 

°C)

335 67.8

NiFe2O4 323 54

NiO/NiFe2O4 327 73

NiO (commercial) 423 96

NiO (commercial)/NiFe2O4 334 89
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