## **Electronic Supplementary Information**

## **Epitaxial Hetero-structure of CdSe/TiO<sub>2</sub> Nanotube Arrays with PEDOT as hole transfer layer for photoelectrochemical hydrogen evolution**

Baohe Chong<sup>ac</sup>, Wen Zhu<sup>\*abc</sup>, Xianghui Hou<sup>b</sup>

<sup>a</sup> State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of

Science & Technology, Wuhan 430074, People's Republic of China

<sup>b</sup> Faculty of Engineering, The University of Nottingham, Nottingham NG7 2RD, UK

<sup>c</sup> Research Institute of Huazhong University of Science & Technology in Shenzhen,

Shenzhen Virtual University Park, Shenzhen 518000, People's Republic of China

\* Correspondence to: W. Zhu, State Key Laboratory of Materials Processing and Die and Mould Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China. Tel./fax: +86 27 87558476.

\* Corresponding author. Tel./fax: +86 27 87558476.

E-mail address: wennar@mail.hust.edu.cn (W. Zhu)



Figure S1. FESEM images of top-surface: (a, b) TiO<sub>2</sub> NTAs(300°C); (c, d) TiO<sub>2</sub> NTAs(700°C).



Figure S2. XRD diffractograms of samples: (black line) TiO<sub>2</sub> NTAs(200°C); (red line) TiO<sub>2</sub> NTAs(300°C); (blue line) TiO<sub>2</sub> NTAs(450°C)



Figure S3. FESEM images of CdSe/TiO<sub>2</sub> NTAs(300°C).





Se Ka1





Figure S5. TEM and HRTEM images of samples. (a, b) TiO<sub>2</sub> NTAs(200°C); (c, d) CdSe/TiO<sub>2</sub>

NTAs(200°C) Insets in d are the selected area enlarged picture and FFT pattern.



Figure S6. FESEM images of PEDOT/CdSe/TiO<sub>2</sub> NTAs(300°C).



Figure S7. EDX elemental mapping images of sample PEDOT/CdSe/TiO<sub>2</sub> NTAs(300°C).



Figure S8. Profile of the potential decay of CdSe/TiO<sub>2</sub> and PEDOT/CdSe/TiO<sub>2</sub> electrodes.



Figure S9. Mott-Schottky plots of CdSe/TiO<sub>2</sub> and PEDOT/CdSe/TiO<sub>2</sub> electrodes.

| Sample                  | CdSe/TiO <sub>2</sub> (V) | PEDOT/CdSe/TiO <sub>2</sub> (V) |
|-------------------------|---------------------------|---------------------------------|
| V <sub>fb</sub> vs. SCE | -0.88                     | -1.09                           |
| V <sub>fb</sub> vs. NHE | -0.64                     | -0.85                           |
| V <sub>CB</sub> vs. NHE | -0.74                     | -0.95                           |
| V <sub>VB</sub> vs. NHE | 0.86                      | 0.55                            |

Table S1. The flatband, conduction and valence band potentials of CdSe and PEDOT.



Figure S10. Illustrations of the energy band positions of CdSe and PEDOT and the photogenerated electron-hole transfer process in PEDOT-CdSe.



Figure S11. IPCE image of TiO<sub>2</sub> (black line); CdSe/TiO<sub>2</sub> (red line); PEDOT/CdSe/TiO<sub>2</sub> (blue line).

| System                    | Electrolyte                              | Photocurrent                                | Stability       | Reference |
|---------------------------|------------------------------------------|---------------------------------------------|-----------------|-----------|
|                           |                                          | Density                                     |                 |           |
| CdS/TiO <sub>2</sub>      | 0.35 M Na <sub>2</sub> SO <sub>3</sub>   | $1.9 \text{ mA} / \text{cm}^2 \text{ at}$ - | remaining 83%   |           |
| nanotubes                 | and 0.24 M Na <sub>2</sub> S             | 0.9V(vs Ag/AgCl)                            | after 1h        | 1         |
|                           |                                          |                                             |                 |           |
| CdSe/TiO <sub>2</sub>     | 0.1 M Na <sub>2</sub> S                  | 3.84 mA/cm <sup>2</sup> at 0                | Remaining 92%   |           |
| nanotubes                 |                                          | V(vs Ag/AgCl)                               | after 400s      | 2         |
|                           |                                          |                                             |                 |           |
| CdSe/ZnO                  | $0.35 \text{ M} \text{Na}_2\text{S}$ and | 5.1 mA /cm <sup>2</sup> at 0.35             | remaining 86%   |           |
| nanotubes                 | 0.25 M K <sub>2</sub> SO <sub>3</sub>    | V (vs. SCE)                                 | after 600s      | 3         |
|                           |                                          |                                             |                 |           |
| CdSe/ZnO                  | $0.2 \text{ M Na}_2\text{S}$             | 14.9 mA /cm <sup>2</sup> at 0.8             | remaining 86.2% |           |
| nanorods                  |                                          | V (vs. RHE)                                 | after 1h        | 4         |
|                           |                                          |                                             |                 |           |
| CdTe/CdS/TiO <sub>2</sub> | 0.35 M Na <sub>2</sub> SO <sub>3</sub>   | 9.17 mA /cm <sup>2</sup> at -               | remaining 75%   |           |
| nanotubes                 | and 0.24 M Na <sub>2</sub> S             | 1.0V(vs Ag/AgCl)                            | after 1h        | 1         |
|                           |                                          |                                             |                 |           |

## Table S2. Photoelectrochemical cell stability of different system

## **References:**

- 1. P. Sheng, W. Li, J. Cai, X. Wang, X. Tong, Q. Cai and C. A. Grimes, *Journal of Materials Chemistry A*, 2013, 1, 7806-7815.
- 2. B. Mukherjee, S. Sarker, E. Crone, P. Pathak and V. R. Subramanian, ACS Applied Materials & Interfaces, 2016, 8, 33280-33288.
- 3. N. Chouhan, C. L. Yeh, S.-F. Hu, R.-S. Liu, W.-S. Chang and K.-H. Chen, *Chemical Communications*, 2011, 47, 3493-3495.
- 4. J. Miao, H. B. Yang, S. Y. Khoo and B. Liu, *Nanoscale*, 2013, 5, 11118-11124.