Supplementary Information

Improved Performance of Inverted Planar Perovskite Solar Cells with F4-TCNQ Doped PEDOT:PSS Hole Transport Layer

Dongyang Liu, Yong Li, Jianyu Yuan, * Qiuming Hong, Guozheng Shi, Jian Wei, Daxing Yuan, Chenchao Huang, Jianxin Tang and Man-Keung Fung *

Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou 215123, China

> *E-mail: jyyuan@suda.edu.cn* (J. Yuan) mkfung@suda.edu.cn (M.-K. Fung)

Fig. S1. Statistics of 30 controls (undoped) and 120 doped PEDOT:PSS based (different F4-TCNQ doping concentration) devices as collected over 13 different batches.

Fig. S2. AFM height images (a,b) and phase images (c,d) of PEDOT:PSS films doped with (a, c) 0 wt% and 5 wt% (b, d) of F4-TCNQ.

Fig. S3. J-V curves of PSCs under recorded in forward (from J_{sc} to V_{oc}) and reverse (from V_{oc} to J_{sc}) scanning directions

Fig. S4. Solar cells with PEDOT:PSS and F4TCNQ doped PEDOT:PSS without encapsulation under ambient atmosphere.

Fig. S5. (a) SEM images of perovskite deposited onto PEDOT:PSS and (b) F4-TCNQ doped PEDOT:PSS HTLs.

Table 51. Performance comparison of different inverted planar perovskite solar ce	S1. Performance comparison of different inverted	planar perovskite solar cells
---	--	-------------------------------

Device Configuration	<i>V</i> _{oc} (V)	J _{sc} (mA/cm ²)	FF	PCE(%)	Reference
ITO/PEDOT:PSS(DMF)/MAPbl ₃ /PCBM(PMMA)/Ag	1.02	22.38	82	18.72	1
ITO/PEDOT:PSS(PSS-Na)/MAPbI ₃ /PCBM/AI	1.11	18.43	76	15.56	2
ITO/PEDOT:PSS(PSS-Na)/MAPbBr ₃ /PCBM/AI	1.52	6.20	50.8	4.79	2
ITO/PEO-PEDOT:PSS/MAPbl ₃ /PCBM/Ag	0.88	23.42	80.10	16.52	3
ITO/PEDOT:PSS/ MAPbl ₃ /PCBM/Au	1.1	20.9	79	18.2	4
ITO/PEDOT:PSS/MAPbI _{3-x} Cl _x /PCBM/AI	0.94	22.4	83	17.4	5
ITO/PEDOT:PSS/MAPbI _{3-x} Cl _x /PCBM/PFN/AI	1.05	20.3	80.2	17.1	6
ITO/PEDOT:PSS/MAPbI _{3-x} Cl _x /PCBM/ZnO/Al	1.02	22.0	74.2	16.8	7
ITO/PEDOT:PSS (F4-TCNQ) /MAPbI _{3-x} Cl _x /PCBM/BCP/Ag	1.02	21.93	77	17.22	This work

- 1. K. Chen, Q. Hu, T. Liu, L. Zhao, D. Luo, J. Wu, Y. Zhang, W. Zhang, F. Liu, T. P. Russell, R. Zhu and Q. Gong, *Adv. Mater.*, 2016, **28**, 10718-10724.
- 2. C. Zuo and L. Ding, *Adv. Energy Mater.*, 2016, **6**, 1601193.
- 3. X. Huang, K. Wang, C. T. Meng and G. Xiong, *Adv. Energy Mater.*, 2016, **6**, 1501773.
- 4. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, *Energy Environ. Sci.*, 2015, **8**, 1602-1608.
- 5. W. Nie, H. Tsai, R. Asadpour, J. C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. L. Wang and A. D. Mohite, *Science*, 2015, **347**, 522-525.
- 6. J. You, Y. Yang, Z. Hong, T.-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W.-H. Chang, G. Li and Y. Yang, *Appl. Phys. Lett.*, 2014, **105**, 183902.
- 7. L. Q. Zhang, X. W. Zhang, Z. G. Yin, Q. Jiang, X. Liu, J. H. Meng, Y. J. Zhao and H. L. Wang, *J. Mater. Chem. A*, 2015, **3**, 12133-12138.

Interlayer	T1(ns)	F1(%)	T2(ns)	F2 (%)	Average(ns)
PEDOT:PSS/perovskite	2.77	5.23	9.10	94.77	8.69
Doped PEDOT:PSS/perovskite	2.41	81.04	5.38	18.96	2.97

Table S2. Values for Time-resolved PL characteristics by fitting decay curves of different devices