Electronic Supplementary Information

Band-aligned $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \mathrm{x} / 2}$ stabilizes $\mathrm{CdS} / \mathrm{CuInGaS}_{2}$ photocathodes for efficient water reduction

 Fang, ${ }^{\text {b }}$ Pengfei Liu, ${ }^{\text {b }}$ Yuanjie Pang, ${ }^{\text {d }}$ Min Liu, ${ }^{\text {c }}$ Mengxia Liu, ${ }^{\text {c }}$ Gengfeng Zheng, ${ }^{e}$ David Sinton, ${ }^{\text {d }}$ Edward H. Sargent, ${ }^{\text {c Huagui Yang }}{ }^{\text {b }}$ and Bo Zhang ${ }^{* a c}$
${ }^{a}$ Department of Physics, East China University of Science \& Technology,130 Meilong Road, Shanghai 200237, China.
${ }^{b}$ Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science \& Technology,130 Meilong Road, Shanghai 200237, China.
${ }^{c}$ Department of Electrical and Computer Engineering, University of Toronto, 35 St George Street, Toronto, Ontario M5S 1A4, Canada.
${ }^{\text {d }}$ Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada.
e Laboratory of Advanced Materials, Department of Chemistry, Collaborative, Innovation Center of Chemistry for Energy Materials, Fudan University, 2005 Song-Hu Road, Shanghai, 200433, China.
*Corresponding author E-mail: bo.zhang@ecust.edu.cn
*Co-Corresponding author E-mail: jhzhong@ecust.edu.cn

Experimental Section

Preparation of CIGS Films: In a typical experiment, ${ }^{1}$ copper (II) nitrate trihydrate $(0.5843 \mathrm{~g})$, indium (III) nitrate hydrate $(0.6461 \mathrm{~g})$, and gallium (III) nitrate hydrate (0.1856 g) were dissolved in 4 ml methanol, and then 3.5 mL methanol with 0.375 g polyvinyl acetate was added into the above solution and stirred for 30 minutes. The precursor solution was spin-coated on fluorine-doped tin oxide (FTO) glass substrates at 2500 rpm for 30 s , then dried at $150{ }^{\circ} \mathrm{C}$ for 3 minutes followed by annealing at $250{ }^{\circ} \mathrm{C}$ for 8 minutes in air. The coating step was repeated six times to obtain an optimum thickness. After annealing at $350^{\circ} \mathrm{C}$ in Muffle furnace for 1 h , the electrodes were then sulfurized in the presence of 40 mg of pristine sulfur powder in a tube furnace at $500^{\circ} \mathrm{C}$ for 30 min .

Surface Modification with n-Type CdS Thin Layer: As previously reported, surface modification of the as-prepared CIGS film with CdS layer was achieved via facile chemical bath deposition method. ${ }^{2}$ Specifically, the CIGS film on FTO was immersed in an aqueous solution containing $12.5 \mathrm{mM} \mathrm{CdSO}_{4}, 0.22 \mathrm{M} \mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}$, and 11 M $\mathrm{NH}_{4} \mathrm{OH}(28-30 \%)$ at $60^{\circ} \mathrm{C}$ for 7 min to yield CdS-covered CIGS (CdS/CIGS) sample.

Preparation of the $C_{3} N_{4}$ powders: $C_{3} N_{4}$ powders were fabricated by directly heating low-cost melamine, as previously reported. ${ }^{3}$ In details, 5 g melamine powder in an alumina crucible with a cover, then thermal decomposition was performed at $500^{\circ} \mathrm{C}$ in a muffle furnace for 4 h with a heating rate of $20^{\circ} \mathrm{C} / \mathrm{min}$ and cooled down to room temperature automatically.

Electrophoretic Deposition (EPD) of $C_{3} N_{4-x} S_{3 x / 2}$: Before conducting EPD experiment, 20 mg as-prepared $\mathrm{C}_{3} \mathrm{~N}_{4}$ powders were added to a 25 ml solvent of acetone with 40 mg iodine and 20 mg pristine sulfur powder as additives, sonicating for 30 min and served as the precursor solution. The electrophoresis deposition occurred in a twoelectrode system with a Ti sheet as the anode and the CdS-covered CIGS film as the cathode. The potential was set to 20 V and the time of the deposition was set to 5 min using KEITHLEY 2400 (SN 006416). After the deposition of $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 x / 2}$ by EPD, the films were annealed at $500{ }^{\circ} \mathrm{C}$ for 2 h under argon atmosphere. The solution
processed superstrate type CIGS solar cell with $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$ configuration is obtained.

Structural Characterizations: The morphology and structure of the samples were observed by SEM (Hitachi S4800) and TEM (JEOL JEM-2010F, F20, 200 kV). The crystal structures of the samples were measured with an X-ray diffractometer (Bruker D8 Advanced Diffractometer, Cu K α radiation, 40 kV). The optical absorption spectras of the samples were recorded in a UV/Vis spectrophotometer (CARY 500). Hematite MSCs were also analyzed using X-ray photoelectron spectroscopy (Thermo ESCALAB 250, Al K exciting radiation). All binding energies were referenced to the C 1s peak (284.6 eV).

PEC and EC measurements: All linear sweep voltammograms were measured by a CHI 660e electrochemical workstation in a three-electrode configuration using a Pt foil ($2 \mathrm{~cm}^{2}$) as counter electrode and an $\mathrm{Ag} / \mathrm{AgCl}$ as reference electrode with an aqueous solution of $\mathrm{K}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}(1 \mathrm{M})$ as the electrolyte. The linear sweep voltammetry was scanned from
-1 to -0.2 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ at a speed of $10 \mathrm{mV} \mathrm{s}^{-1}$. The measurements were performed under one sun condition using a solar light simulator (Oriel, 91160, AM 1.5 globe). The power of the simulated light was adjusted to $100 \mathrm{~mW} \mathrm{~cm}^{-2}$.

The electrochemical impedance spectra (EIS) and Mott-Schottky plots were measured under a Xe lamp illumination by using an electrochemical workstation (Parstat 2273, Princeton). The frequency range of EIS experiments was from 100 kHz to 100 mHz . Electrolyte: $1 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution ($\mathrm{pH}=7$). Potential: $\mathrm{OV}_{\text {RHE }}$. The Mott-Scottky calculations were derived from impedance measurements in the dark sweeping from -1 to -0.2 V vs. $\mathrm{Ag} / \mathrm{AgCl}$ at a speed of $10 \mathrm{mV} \mathrm{s}^{-1}$. The alternating current (AC) potential frequency was 200 Hz with the amplitude of 10 mV .

Figure S1. a-c) SEM images of (a) CIGS, (b) CdS/CIGS, and (c) $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$. d) EDS measurements of $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$.

Figure S2. Cross-section SEM image of $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 x / 2} / \mathrm{CdS} / \mathrm{CIGS}$ electrode.

The corresponding cross-section SEM image showed the thickness of around 80 nm for CdS. And about 15 nm for $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 \mathrm{x} / 2}$ layer, which seems too thick for the electron tunneling process. Therefore, we confirm that the $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \mathrm{x} / 2}$ is introduced to form a CdS/CIGS junction.

Figure S3. Typical TEM images of $\mathrm{C}_{3} \mathrm{~N}_{4}$ (a) and $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 \mathrm{x} / 2}$ (b) particles.

Figure S4. High resolution XPS spectra of $N 1 s$ in $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2} / \mathrm{CdS} /$ CIGS samples.

Figure S5. High resolution XPS spectrum of $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \mathrm{x} / 2} / \mathrm{CdS} / \mathrm{CIGS}$ photocathodes.

Figure S6. The Steady-state current density as a function of applied voltage during HER at $1 \mathrm{M}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution ($\mathrm{pH}=7$) over $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \mathrm{x} / 2}$ and $\mathrm{C}_{3} \mathrm{~N}_{4}$.

Figure S7. The Current-potential plots for CdS/CIGS, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4}$ ${ }_{x} S_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$ photocathodes all the CdS/CIGS substrate using a chemical vapor deposition (CVD) route in a $1 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution ($\mathrm{pH}=7$) irradiated with chopped AM 1.5G illumination.

Figure S8. Mott-Schottky plots of $\mathrm{C}_{3} \mathrm{~N}_{4}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2}$ photocathodes. The ac amplitude is 10 mV and the frequency is 200 Hz .

Figure S9. The UV-Vis plots of CIGS, CdS, $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2}$ and g-C $\mathrm{C}_{3} \mathrm{~N}_{4}$.

Figure S10. Absorbance spectra in the band edge region for samples CIGS, CdS/CIGS, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$ with an extrapolation of the spectra in order to determine the band gap values.

Figure S11. [hy $\ln (1-I P C E)]^{2}$ vs. band gap (eV) plots of CIGS, CdS/CIGS, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$.

Figure S12. Ultraviolet Photoelectron Spectra of CdS/CIGS, $\mathrm{C}_{3} \mathrm{~N}_{4} / \mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4}$ ${ }_{x} S_{3 x / 2} / C d S / C I G S$.

Method	Sample	Atomic ratio				
		Cu	In	Ga	S	In/Ga
ICP-AES	Electrolyte	1	0.847	0.153	--	5.54

Table S1. Atomic ratios of the CulnGaS 2 according to ICP-AES.

Method	Sample	Results (Mean Data)
		Cd
ICP-MS	$\mathrm{CdS} / \mathrm{CIGS}$	$0.016 \mathrm{mg} \cdot \mathrm{L}^{-1}$
	$\mathrm{C}_{3} \mathrm{~N}_{4-x} \mathrm{~S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$	$0.00001 \mathrm{mg} \cdot \mathrm{L}^{-1}$

Table S2. Quantitative analysis of the Cd in $1 \mathrm{M} \mathrm{K} \mathrm{K}_{2} \mathrm{HPO}_{4} / \mathrm{KH}_{2} \mathrm{PO}_{4}$ solution after 20 h stability of $\mathrm{CdS} / \mathrm{CIGS}$ and $\mathrm{C}_{3} \mathrm{~N}_{4-\mathrm{x}} \mathrm{S}_{3 \times / 2} / \mathrm{CdS} / \mathrm{CIGS}$ photocathode according to ICP-MS.

References

1 Z. Guan, W. Luo, J. Feng, Q. Tao, Y. Xu, X. Wen, G. Fu, Z. Zou, J. Mater. Chem. A, 2015, 3, 7840.

2 F. Jiang, Gunawan, T. Harada, Y. Kuang, T. Minegishi, K. Domen and S. Ikeda, J. Am. Chem. Soc., 2015, 137, 13691.

3 Y. Hou, F. Zuo, A. P. Dagg, J. Liu and P. Feng, Adv. Mater., 2014, 26, 5043.

