Supplementary Information

Multi-element doping design for a high-performance LiMnPO₄ cathode via

metaheuristics computation

Young Hwa Jung,^a Woon Bae Park,^b Myoungho Pyo,^c Kee-Sun Sohn^{b*} and Docheon Ahn^{a*}

^aBeamline Division, Pohang Accelerator Laboratory (PAL), Pohang 37673, Republic of

Korea

*E-mail: adc4055@postech.ac.kr

^bNano Technology and Advanced Materials Engineering, Sejong University, Seoul 05006,

Republic of Korea

*E-mail:kssohn@sejong.ac.kr

^cDepartment of Printed Electronics Engineering, Sunchon National University, Suncheon 57922, Republic of Korea

Dopant	Precursor	Manufacturer
Al	Al(NO ₃) ₃ · 9H ₂ O, 99.997%	Aldrich
Ca	$Ca(NO_3)_2 \cdot 4H_2O, 99\%$	Sigma-Aldrich
Со	$Co(CH_3COO)_2 \cdot 4H_2O, 98\%$	Sigma-Aldrich
Cu	CuCl ₂ , 99.999%	Aldrich
Fe	FeC ₂ O ₄ · 2H ₂ O, 99%	Alfa Aesar
Mg	$Mg(NO_3)_2 \cdot 6H_2O, 99.999\%$	Aldrich
Ni	Ni(CH ₃ COO) ₂ · 4H ₂ O, 99.998%	Aldrich
Ti	Ti(OC ₃ H ₇) ₄ , 98%	Aldrich
Y	Y(NO ₃) ₃ · 6H ₂ O, 99.8%	Aldrich
Zn	Zn(CH ₃ COO) ₂ , 99.99%	Aldrich
Zr	Zr[O(CH ₂) ₃ CH ₃] ₄ solution (80 wt.% in 1-butanol)	Aldrich

Table S1. Transition metal precursors for 11 dopants.

Figure S1. Dopants composition and battery performance results of 150 cathode samples.

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Ca	Zn	Al	1.2	1.0	2.4	🖒 66.09	⇒ 121	94.85
2	Cu	Zn	Al	1.0	1.8	2.4	75.68	⇒ 127	92.69
3	Fe	Ni	Ti	1.2	1.4	1.4	74.56	M 116	93.63
4	Co	Fe	Ni	2.0	2.2	1.2	71.46	124	93.74
5	Co	Fe	Zr	2.2	2.6	2.6	72.10	⇒ 122	86.18
6	Ca	Fe	Y	1.2	1.4	2.6	77.79	118	97.76
7	Fe	Ni	Y	1.6	2.2	2.4	70.72 📈	⇒ 125	93.68
8	Mg	Co	Ni	1.2	1.2	1.4	75.61	2 131	92.15
9	Mg	Ni	Ti	1.4	1.2	2.4	ᅌ 67.47	⇒ 129	92.85
10	Ni	Y	Zr	1.0	1.6	1.0	今 69.89	i 24	91.46
11	Co	Fe	Zr	1.6	2.2	1.0	ᅌ 64.98	2 133	94.37
12	Fe	Cu	Zr	2.0	3.0	2.2	6 4.34	2 130	82.31
13	Ca	Cu	Ti	1.4	2.2	1.6	⇔ 66.16	4 104	<mark>⇒</mark> 89.82
14	Ca	Fe	Zr	2.2	1.4	2.4	ᅌ 64.84	2 133	82.86
15	Mg	Cu	Ti	1.6	1.8	2.4	75.77	2 133	1 97.86
16	Co	Ni	Ti	1.0	2.4	1.4	75.03	⇒ 126	94.05
17	Ca	Ni	Zn	1.4	3.0	1.2	72.64	119	92.17
18	Co	Cu	Ni	2.2	1.4	1.2	🖒 66.42	⇒ 122	90.89
19	Ca	Fe	Zn	2.2	2.2	2.2	 - - - - 	128	94.84
20	Co	Ni	None	1.4	1.6	0.0	74.30	⇒ 122	91.40
21	Co	Cu	Y	2.2	3.0	2.4	S3.57 <u>S</u>	7 131	84.35
22	Cu	Ni	Y	1.6	1.8	2.6	🖒 68.41	⇒ 124	₿9.24
23	Ni	Zn	Al	1.2	2.2	1.4	🖒 66.38	121	90.98
24	Mg	Fe	Y	1.8	2.2	1.2	ᅌ 62.94	121	1 95.80
25	Zn	Y	Zr	1.0	1.0	2.4	🔿 69.57	118	88.27

1st generation

2nd generation

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Fe	Y	None	1.8	1.6	0.0	<mark>∕⊴ 5</mark> 6.53	➡ 125	1 97.11
2	Cu	Y	Ti	2.4	1.6	1.8	🔿 66.16	104	89.45
3	Co	Ni	None	1.4	2.8	0.0	79.63	2 133	90.12
4	Ca	Fe	Y	1.2	1.2	1.6	48.71 4	123	92.35
5	Co	Ni	Ti	1.0	2.4	1.8	🔿 65.40	⇒ 126	91.74
6	Ca	Ni	Zn	1.4	2.8	2.8	70.08 📈	⇒ 127	92.56
7	Ca	Fe	Y	1.6	2.0	1.0		7 131	97 .52
8	Mg	Co	Ni	1.2	1.4	1.8	ᅌ 64.04	7 131	93.86
9	Co	Cu	Y	1.0	1.0	2.4	41.55 뒞	<u>></u> 112	4 77.34
10	Co	Ni	Zr	1.4	1.4	2.6	🖒 62.62	2 130	➡ 87.49
11	Co	Y	Zr	1.0	1.8	2.0		123	\$9.18
12	Cu	Zn	AI	1.0	1.8	1.6	🖒 64.41	i 24	90.62
13	Co	Cu	Ni	2.2	1.4	1.6	🖒 65.46	2 131	91.18
14	Mg	Co	Ni	1.2	1.2	1.6	70.64 📈	140	90.79
15	Ni	Zn	AI	1.2	2.2	1.2	73.00 📈	2 134	<mark>> 93.85</mark>
16	Co	Fe	Ni	2.0	2.4	2.6	70.20 📈	141	93.82
17	Fe	Ni	Zn	1.2	1.0	1.8	ᅌ 68.65	7 137	90.27
18	Ni	Zn	Zr	1.6	1.2	1.8	ᅌ 64.50	2 138	<mark>⇒ 86</mark> .71
19	Ca	Al	Y	2.0	1.8	1.2		⇒ 123	⇒ 88.58
20	Ni	Zn	Al	1.2	2.0	3.0	51.77	<u>></u> 113	4 77.08
21	Co	Fe	Zr	1.6	2.8	1.0	ᅌ 66.97	7 132	<mark>⇔</mark> 89.44
22	Cu	Zn	Y	1.2	1.8	3.0	52.41	109	78.98
23	Ca	Fe	Y	2.2	2.4	2.0	ᅌ 61.21	121	93.73
24	Cu	Zn	AI	1.6	2.4	2.8	51.56	119	83.88
25	Mg	Ca	None	1.0	1.0	0.0	🔿 62.57	113	93.29

3rd generation

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Co	Ni	None	1.4	2.6	0.0	ᅌ 69.51	⇒ 127	➡ 87.19
2	Co	Fe	Zr	1.8	2.4	2.8	72.45 📈	⇒ 121	≥ 87.85
3	Co	Cu	Zr	2.4	2.0	1.4		125	84.40
4	Cu	Al	Y	1.8	1.2	2.4	ᅌ 64.89	125	₿6.28
5	Co	Fe	Zr	1.6	2.8	1.2	🔿 65.56	7 131	2.28
6	Fe	Y	None	2.0	2.2	0.0	🔿 67.58	⇒ 126	90.55
7	Ca	Fe	Zn	2.4	1.2	2.6	🖒 67.47	7 136	⇒ 87.61
8	Cu	Y	Zr	1.8	1.6	1.0	🔀 74.77	2 132	≥ 85.69
9	Ca	Fe	Y	1.2	1.4	2.4	76.17	7 131	<mark>⇒} 89.9</mark> 9
10	Mg	Co	Ti	1.8	1.2	1.6	6 3.84	2 132	⇒ 89.84
11	Co	Fe	Zn	2.2	2.0	1.6	ᅌ 61.42	128	84.58
12	Ca	Fe	Y	1.6	2.2	2.8	<u>∖</u> 56.07	2 130	≥ 87.05
13	Ca	Fe	Y	1.6	1.0	1.4	🖒 64.25	2 134	82.85
14	Ca	Fe	Zn	2.2	1.6	2.6		➡ 125	93.54
15	Ca	Ni	Zn	1.4	3.0	1.6	🖒 66.56	2 133	►> 87.07
16	Co	Cu	Zr	1.8	1.2	1.4	<u>∖</u> 54.91	128	⇒ 85.99
17	Ca	Fe	Ni	1.4	2.8	2.8	72.03 📈	7 134	92.64
18	Mg	Co	Zn	1.8	1.0	1.6	67 .76	2 137	⇒ 86.67
19	Co	Fe	Zn	1.0	1.4	2.6	ᅌ 62.96	142	90.62
20	Mg	Co	Ni	2.4	1.6	1.8	72.96 📈	141	2 91.76
21	Ca	Ni	Zn	1.4	2.6	2.8	<u>∖</u> 54.96	142	⇒ 87.87
22	Mg	Co	Ni	1.4	1.0	1.0	i 6 3.67	2 136	90.05
23	Co	Fe	Ni	2.0	2.4	2.8	72.39 🗸	140	94.16
24	Ni	Zn	Zr	1.2	3.0	1.4	🖒 66.76	143	⇒ 86.70
25	Fe	Zn	AI	2.2	2.4	1.6	🔿 67.95	140	\$9.57

4th generation

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Co	Fe	Zr	1.6	3.0	1.4	ᅌ 68.96	⇒ 124	24.90
2	Cu	Zn	None	1.6	2.0	0.0	∑ 59.40	⇒ 120	⊳ 89.93
3	Ni	Zn	Al	1.2	2.4	2.0	ᅌ 69.15	➡ 127	<mark>⇔</mark> 89.30
4	Co	Fe	Zn	1.4	1.6	1.0	⇔ 60.83	2 131	92.66
5	Co	Fe	Ni	1.6	2.2	2.0	🔿 65.19	➡ 128	92.90
6	Ca	Zn	Zr	1.2	2.6	2.6	ᅌ 64.51	⇒ 124	⇒ 89.48
7	Ca	Fe	Zn	2.0	1.0	2.2	🔿 65.62	2 130	₿5.76
8	Co	Fe	Zr	1.6	2.8	2.0	⇔ 69.36	141	92.38
9	Ca	Zn	AI	1.4	3.0	1.4	71.00	2 132	≥ 87.66
10	Mg	Co	Zn	1.6	3.0	2.4	🔿 67.34	2 131	87.22
11	Co	Cu	Y	1.8	2.6	1.6	ᅌ 62.54	2 136	83.80
12	Ca	Fe	Zn	2.4	1.0	1.2	⇔ 60.65	128	\$8.27
13	Co	Fe	Zn	1.0	1.2	1.0	🖒 66.99	⇒ 130	90.36
14	Ni	Zn	AI	1.2	2.4	1.2	71.75 📈	233	88.24
15	Mg	Co	Ni	1.2	2.8	2.2	68 .63	2 137	92.17
16	Fe	Y	Ti	1.2	2.2	1.8	🔿 67.34	⇒ 126	91.93
17	Ca	Zn	Y	1.2	2.2	2.0	ᅌ 62.84	⇒ 129	92.33
18	Mg	Co	Ni	2.4	1.6	2.2	73.00 📈	147	91.39
19	Mg	Co	Zn	1.8	1.0	1.4	ᅌ 66.84	146	⇒ 88.03
20	Ca	Fe	Zn	2.4	1.4	3.0	ᅌ 64.61	233	91.17
21	Co	Ni	None	1.2	2.6	0.0	75.43	143	91.54
22	Ca	Cu	Y	1.6	1.0	2.8	ᅌ 67.43	7 134	90.24
23	Co	Fe	Y	1.0	1.8	1.8	70.60	2 137	94.35
24	Co	Y	None	1.6	1.8	0.0	75.64	2 136	90.04
25	Ca	Ni	Zn	1.4	2.4	2.0	74.71	142	\$9.17

5th generation

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Cu	Zn	Ti	1.2	2.2	2.6	ᅌ 66.76	⊳> 125	94.95
2	Ca	Fe	Ti	1.0	2.0	1.0	🔿 64.22	⇒ 126	94.99
3	Mg	Co	Zn	1.8	1.0	1.2	74.89	➡ 125	1 95.44
4	Cu	Y	Zr	1.8	1.6	1.4	ᅌ 62.87	⇒ 122	93.16
5	Ca	Ni	Zn	1.4	3.0	1.4	72.17	⊳> 129	⇒ 88.33
6	Ca	Fe	Ni	1.4	2.8	3.0	ᅌ 64.36	⇔ 127	\$5.84
7	Ca	Fe	Al	1.0	2.0	1.6	 68 .16	124	97 .08
8	Cu	Zr	None	1.6	2.2	0.0		M 113	➡ 85.44
9	Mg	Co	Zr	1.4	1.4	1.4	🖒 65.37	⇒ 123	94.02
10	Cu	Y	Zr	1.8	1.8	2.4	🖒 65.04	125	95.29
11	Ca	Ni	Zn	1.4	2.2	1.0	82.85	117	94.30
12	Co	Y	None	1.4	3.0	0.0	🖒 66.33	ip 129	2 93.25
13	Co	AI	Zr	1.2	2.0	2.0	🖒 64.95	M 116	92.31
14	Mg	Co	Cu	1.8	1.0	1.6	64 .23	2 131	93.73
15	Ni	Al	Y	1.8	2.2	1.2	🖒 67.50	128	94.24
16	Ca	Fe	Y	2.2	2.4	2.0		⇒ 124	≥ 85.08
17	Ni	Zn	AI	1.2	2.6	3.0	81.55	> 124	94.64
18	Ca	Ni	Zn	1.6	1.4	2.0	6 3.29	124	91.73
19	Co	Fe	Zn	2.2	1.8	3.0	78.70	2 135	2.91
20	Co	Fe	AI	2.4	1.4	1.0	80.72	🔿 129	93.38
21	Cu	Ni	Ti	1.6	2.2	2.8	d1.21 🖒	⇒ 120	⇒ 86.75
22	Ca	Fe	Zn	2.4	1.2	2.8	决 73.28	2 138	➡ 87.31
23	Mg	Co	Cu	1.8	1.2	2.6	70.97 📈	ip 129	92.00
24	Co	Fe	Ti	2.2	2.6	1.2	🖒 60.35	2 134	84.71
25	Cu	Zn	Ti	1.4	2.0	1.2	ᅌ 69.24	2 138	88.83

6th generation

sample #	Dopant1	Dopant2	Dopant3	D1 (wt.%)	D2 (wt.%)	D3 (wt.%)	C-rate (%)	Capacity (mAh g ⁻¹)	Cyclability (%)
1	Co	Fe	Zn	2.2	2.0	1.4	ᅌ 66.70	➡ 122	≥ 85.65
2	Mg	Co	Zn	1.4	2.2	2.8	82.56 82.56	⇒ 129	90.19
3	Cu	Zn	Ti	1.4	2.0	2.6	76.77	⇒ 129	91.58
4	Ca	Fe	Al	1.6	2.0	1.8	78.30	➡ 127	96.07
5	Cu	Zn	Ti	1.4	1.6	2.4	77.26	⇒ 124	94.44
6	Co	Fe	Zn	2.2	2.0	1.0	de d	2 135	96.67
7	Co	Fe	Zr	1.6	2.6	2.8	78.81	2 133	91.79
8	Co	Fe	AI	2.2	2.6	3.0	🔿 67.69	⇒ 120	95.82
9	Mg	Co	Cu	1.8	1.2	2.4	6 7.86	2 137	⇒ 88.56
10	Mg	Co	Ni	1.6	1.2	1.0	72.05 📈	2 133	93.58
11	Ca	Cu	Y	1.6	1.0	3.0	 61 .33	⇒ 127	\$7.20
12	Cu	Zn	Ti	1.2	2.4	2.0	🖒 66.84	2134	91.36
13	Co	Fe	AI	2.4	1.8	1.2	─ 54.53	113	➡ 86.77
14	Co	Fe	Ni	1.4	3.0	1.0	51.88	⇒ 121	84.50
15	Mg	Fe	AI	1.2	1.0	2.0	52.95	119	≥ 85.58
16	Mg	Cu	Ti	1.2	3.0	2.8		⇒ 120	88.43
17	Co	Cu	Zr	2.4	1.8	2.4	🔿 67.58	⇒ 127	⇒ 86.94
18	Co	Ni	None	1.2	2.4	0.0	🖒 68.04	⇒ 127	94.60
19	Fe	Cu	Zr	1.4	2.8	1.6	 62 .43	2 136	⇒ 86.71
20	Ca	Ni	Ti	1.0	1.0	1.8	70.62 📈	⇒ 120	94.37
21	Ca	Cu	Y	1.6	1.6	1.6	🔿 67.94	118	≥ 89.13
22	Ni	Al	Y	2.0	1.6	2.2	ᅌ 64.86	116	94.72
23	Co	Ni	AI	2.0	1.6	1.6	🖒 67.59	129	95.61
24	Ni	AI	Zr	1.4	2.2	2.4	55.84 🖌	➡ 122	86.03
25	Co	Fe	Zr	1.8	1.0	2.0	🔿 67.44	⇒ 129	93.70

Table S2. The stoichiometric molar composition of the samples measured using ICP-AES

	Li	Mn	Mg	Co	Ni	Р
LiMnPO ₄ /C	1.046	1.008	-	-	-	1
LiMn _{0.938} Mg _{0.024} Co _{0.016} Ni _{0.02} PO ₄ /C	1.087	0.973	0.028	0.016	0.021	1
LiMn _{0.962} Co _{0.012} Ni _{0.026} PO ₄ /C	1.048	0.976	-	0.013	0.025	1

Figure S3. (a) Co K-edge XANES spectra and (b) Ni K-edge XANES spectra of $LiMn_{0.938}Mg_{0.024}Co_{0.016}Ni_{0.02}PO_4/C$ and $LiMn_{0.962}Co_{0.012}Ni_{0.026}PO_4/C$.

Figure S4. CV plots and the estimated R_{ct} from linear *I-V* regions for (a) LiMnPO₄, (b) LiMnPO₄/C, (c) LiMn_{0.938}Mg_{0.024}Co_{0.016}Ni_{0.02}PO₄/C, and (d) LiMn_{0.962}Co_{0.012}Ni_{0.026}PO₄/C.