Supporting Information

First-principles study of initial oxygen reduction reaction on stoichiometric and reduced CeO₂ (111) surfaces as cathode catalyst for lithium-oxygen batteries

Xinyu Li^{a, b, d}, Zongbao Li^c, Xiaofeng Yang^a, Lichao Jia^{*a}, Yong Qing Fu^{*b}, Bo Chi^a, Jian Pu^a, Jian Li^a

^a Center for Fuel Cell Innovation, State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science & Technology, Wuhan, Hubei 430074, China. Email: jialc@hust.edu.cn

^b Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST, UK. Email: richard.fu@northumbria.ac.uk

^c School of Material and Chemical Engineering, Tongren University, Guizhou 554300, China.

^d China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.

Figure S1 Optimized configurations of reduced $CeO_2(111)$ with one surface oxygne vacancy (a-c) or subsurface oxygen vacancy (d-f). Ce^{3+} are in blue.

Table S1 Calculated formation energies (eV) of one oxygen vacancies with different Ce^{3+} at $CeO_2(111)$. Corresponding structures in Figure S1.

	а	b	с	d	e	f
E _f (eV)	2.34	2.19	2.13	2.16	1.96	1.84

Figure S2 Optimized configurations of Li adsorption on stoichiometric and reduced $CeO_2(111)$ with next nearest(NN) Ce^{3+} and nearest(N) Ce^{3+} . Ce^{3+} are in blue.

Table S2 The adsorption energies (eV) of Li at the stoichiometric and reduced CeO ₂ (1	11) surfaces with
next nearest (NN) Ce ³⁺ and nearest (N) Ce ³⁺ . Corresponding structures in Figure S2.	

	a	b	с	d	e	f	g
Left (NN Ce ³⁺)	-2.06	-0.78	-1.12	-1.78	-2.25	-1.61	-1.74
Right(N Ce ³⁺)	-1.78	-0.99	-0.95	-1.64	-2.01	-1.25	-1.41

Figure S3 Detailed energy diagram and the schematics for the initial ORR process through different pathway, a, b, c, d at the ST CeO₂ surface, e, f, g, h at the SOV CeO₂ surface and i, j, k at the SSOV CeO₂ surface.

	Surface Type	Reaction step	$\Delta G_n (eV)$
a		$ST + Li \rightarrow ST Li$	-2.07
	ST CeO ₂ (111)	$ST Li + Li \rightarrow ST 2Li$	-1.91
		$ST 2Li + O_2 \rightarrow ST Li_2O_2$	-0.49
		$ST + Li \rightarrow ST_Li$	-2.07
b	ST CeO ₂ (111)	$ST_Li + Li \rightarrow ST_2Li$	-1.91
		$ST_2Li + O_2 \rightarrow ST_Li_2O_2$	+0.13
		$ST + Li \rightarrow ST_Li$	-2.07
c	ST CeO_2 (111)	$ST_Li + O_2 \rightarrow ST_LiO_2$	+0.07
		$ST_LiO_2 + Li \rightarrow ST_Li_2O_2$	-2.48
		$ST + Li \rightarrow ST Li$	-2.07
d	ST CeO_2 (111)	$ST_Li + O_2 \rightarrow ST_LiO_2$	+0.07
		$ST_LiO_2 + Li \rightarrow ST_Li_2O_2$	-1.85
		$SOV + Li \rightarrow SOV_Li$	-1.09
e	SOV $CeO_2(111)$	$SOV_Li + Li \rightarrow SOV_2Li$	-1.55
		$SOV_2Li + O_2 \rightarrow SOV_Li_2O_2$	-4.03
	SOV CeO ₂ (111)	$SOV + Li \rightarrow SOV_Li$	-1.09
f		$SOV_Li + O_2 \rightarrow SOV_LiO_2$	-3.22
		$SOV_LiO_2 \rightarrow SOV_Li_2O_2$	-2.35
	SOV CeO ₂ (111)	$SOV + O_2 \rightarrow SOV O_2$	-2.19
g	501 6602 (111)	$SOV_O_2 + Li \rightarrow SOV_LiO_2$	-2.06
		$SOV_LiO_2 + Li \rightarrow SOV_Li_2O_2$	-2.17
		$SOV + Li \rightarrow SOV_Li$	-1.09
h	SOV CeO ₂ (111)	$SOV_Li + Li \rightarrow SOV_2Li$	-1.55
		$SOV_2 Li+Li \rightarrow SOV_3 Li$	-1.41
		$SOV_3 Li + O_2 \rightarrow SOV_Li_3O_2$	-3.90
		$SSOV + Li \rightarrow SSOV Li$	-2.27
i	SSOV $CeO_2(111)$	$\underline{SSOV_Li + Li \rightarrow SSOV_2Li}$	-1.67
		$SSOV_2Li + O_2 \rightarrow SSOV_Li_2O_2$	-1.27
		$\underline{SSOV + Li \rightarrow SSOV Li}$	-2.27
j	SSOV $CeO_2(111)$	$\underline{SSOV_Li + Li \rightarrow SSOV_2Li}$	-1.67
		$SSOV_2L_1 + O_2 \rightarrow SSOV_L_1_2O_2$	-0.03
k		$SSOV + L_1 \rightarrow SSOV L_1$	-2.27
	SSOV $CeO_2(111)$	$\underline{SSOV_Li + O_2 \rightarrow SSOV_LiO_2}$	+0.45
		$ $ SSOV_LiO ₂ \rightarrow SSOV_Li ₂ O ₂	-1.94

Table S3 Detailed reaction steps and corresponding ΔG_n (eV) for the initial ORR on the ST, SOV, and SSOV CeO₂ surfaces.