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Experimental details

Electrode preparation

The electrode was prepared by hand grinding commercial red phosphorus (red P) (99%, 

Sigma Aldrich) with single wall carbon nanohorns (SWCNHs) (Carbonium), single wall 

carbon nanotubes (SWCNTs) (HiPco purified, NanoIntegris), and SWCNT/SWCNH 

(50%/50%) with a mass ratio of 1:1 for 1h. 

Electrochemical test

Pure red P, SWCNH-red P, SWCNT/SWCNH-red P, and SWCNT-red P were mixed 

with sodium carboxymethyl cellulose (CMC) (Sigma-Aldrich, average Mw ~90,000) as 

binder and conductive carbon black (TIMCAL, SUPER C45) with a mass ratio of 7:2:1. 

Then the mixed electrode materials were dissolved in N-methyl-pyrrolidinone (NMP) and 

sonicated for 1h to form uniform slurry. The slurry was drop-casted onto a stainless steel 

surface and then dried in vacuum oven at 100 ℃ overnight. All electrochemical tests 

were performed in CR 2032 coin-type cells assembled in Ar-filled glovebox. 1 M 

NaClO4 (Sigma-Aldrich, ≥98.0%) in ethylene carbonate (EC)/diethyl carbonate (DEC) 

(Sigma-Aldrich, 99%/>99%) with 1 to 1 volume ratio was used as electrolyte with 

additional 10 vol% 4-Fluoro-1,3-dioxolan-2-one (FEC) (Alfa Aesar, 98%) as electrolyte 

additive to help form stable solid-electrolyte interphase (SEI). A Whatman grade GF/F 

glass fiber microfiber filter (Sigma-Aldrich) was used as separator. Pure sodium was used 

as counter and reference electrode. Galvanostatic charge/discharge was performed 

between 0.001 and 2 V at a current density of 200 mA/gcomp. Rate studies were performed 

at current densities of 200, 400, 1000, and 2000 mA/gcomp.

Material characterization
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Scanning electron microscopy (SEM) images of SWCNH, SWCNT, SWCNH-red P, 

SWCNT/SWCNH-red P, and SWCNT-red P were acquired by a Zeiss Merlin Scanning 

Electron Microscope. Raman characterizations were performed by using a Renishaw 

inVia Raman spectrometer with a 532 nm laser. For characterizations of different 

alloying products, batteries were immediately opened inside the Ar filled glovebox 

during 2nd discharging process at different cut-off voltages of 0.30 V, 0.20 V, and 0.001 

V, and electrodes were rinsed with DEC solvent carefully before transferring for ex-situ 

scanning transmission electron microscopy (STEM) study on a FEI Transmission 

Electron Microscope. 
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Fig. S1 (a) Raman spectrum of commercial red P; (b) 1st-cycle galvanostatic 

charge/discharge of pure red P with polymer binder and conductive carbon.
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Fig. S2 1st-cycle galvanostatic charge/discharge of SWCNH-red P, SWCNT/SWCNH-

red P, and SWCNT-red P.
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Fig. S3 STEM EDS mapping images of different alloying products of SWCNT-red P 

anode. (a) to (d): NaP; (e) to (h): Na5P4; (i) to (l): Na3P. (m) STEM EDS elemental 

spectra of different elements (with little F indicating incomplete electrolyte washing and 

oxygen indicating brief exposure to air during transferring the sample for TEM).
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Fig. S4 (a) 2nd-cycle charge comparison with different dealloying phases indicated by 

car and stick model. (b) dQ/dV curve derived from 2nd charge, with different shading 

color indicating the capacities delivered by each phase during dealloying.
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Fig. S5 Rate performance comparison of SWCNH-red P, SWCNT/SWCNH-red P, and 

SWCNT-red P.


