## **Supporting Information**

**3D** Graphene Network Encapsulating SnO<sub>2</sub> Hollow Spheres for High-performance Anode Material of Lithium-ion Batteries

**3D** Graphene Network Encapsulating SnO<sub>2</sub> Hollow Spheres for High-performance Anode Material of Lithium-ion Batteries

Xiang Hu<sup>1,2</sup>, Guang Zeng<sup>1,2</sup>, Junxiang Chen<sup>1,2</sup>, Canzhong Lu<sup>1,2\*</sup>, Zhenhai Wen<sup>1,2\*</sup>

1 Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

2 Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P. R. China

\*Email:wen@fjirsm.ac.cn, czlu@fjirsm.ac.cn



**Figure S1**. XPS survey spectra (a) of APTEOS modified H-SnO<sub>2</sub> and pure H-SnO<sub>2</sub> samples, and high resolution XPS spectrum of N 1s (b) for the APTEOS modified H-SnO<sub>2</sub> samples. The N 1s peak shows that the primary amines (NH<sub>2</sub>, 399.3 eV) and secondary amines (N=C, 398.6 eV) along with oxidized species as amides (NHC=O, 400.9 eV) in the high resolution XPS spectrum. The abundant amino groups can serve as deposition places to coat graphene nanosheets, resulting in graphene fully enwrapped H-SnO<sub>2</sub> nanospheres by electrostatic adsorption.



**Figure S2**. Zeta potentials of APTEOS modified  $\text{H-SnO}_2$  (black square) and graphene oxide (red circle) in aqueous solution at different pH values. The blue rectangle indicates that the assembly process can be spontaneous at pH 2 where the maximum electrostatic interactions are achieved between the APTEOS modified  $\text{H-SnO}_2$  and graphene oxide.



**Figure S3**. Photographs of the assembly process of APTEOS modified H-SnO<sub>2</sub> and graphene oxide in aqueous solutions at pH 2.



Figure S4. The magnified a) FESEM and b) TEM images of the as-prepared H-SnO<sub>2</sub>.



Figure S5. a) FESEM and b)TEM images of the solid  $SnO_2$  nanospheres (S-SnO<sub>2</sub>) prepared at 150 °C for 6 h. c) FESEM and d) TEM images of after self-assembled wrapping of interconnected graphene networks (S-SnO2@rGO). e) FESEM and f)TEM images of graphene loading hollow  $SnO_2$  nanospheres (H-SnO<sub>2</sub>/rGO).



Figure S6. a) XPS of C 1s and b) XPS Sn 3d fine scan spectrum of H-SnO<sub>2</sub>@rGO.



Figure S7. The coulombic efficiency of the  $H-SnO_2@rGO$  electrode materials at a current density of 0.1 A g<sup>-1</sup>.



Figure S8. The electrochemical performance of rGO at a current density of 0.1 A  $g^{-1}$ .



**Figure S9.** Cycling performance and Coulombic efficiency of  $S-SnO_2@rGO$  for 400 cycles at the current density of 1 A g<sup>-1</sup>.



Figure S10. a,b) Typical TEM image of a fully charged H-SnO<sub>2</sub>@rGO electrode after 100 cycles at a current density of 100 mA g<sup>-1</sup>.

**Table S1.** Electrochemical performance comparison of H-SnO<sub>2</sub>@rGO with previouslyreported graphene-based SnO<sub>2</sub> composites with different morphologies orcompositions.

| Materials                                     | Voltage<br>range(V) | Current<br>density<br>(mA g <sup>-1</sup> ) | Cycle<br>number | Specific<br>capacity<br>(mAh g <sup>-1</sup> ) | Reference |
|-----------------------------------------------|---------------------|---------------------------------------------|-----------------|------------------------------------------------|-----------|
| H-SnO <sub>2</sub> @rGO                       | 0.01-3.0            | 100<br>1000                                 | 100<br>500      | 1107<br>552                                    | Our Work  |
| S-SnO <sub>2</sub> @rGO                       | 0.01-3.0            | 100                                         | 100             | 744                                            | Our Work  |
| Graphene-based<br>mesoporous SnO <sub>2</sub> | 0.01-3.0            | 78                                          | 50              | 848                                            | 1         |
| SnO <sub>2</sub> /GNS                         | 0.005-2.0           | 50                                          | 30              | 570                                            | 2         |
| 3D SnO <sub>2</sub> /graphene                 | 0.01-3.0            | 200                                         | 50              | 845                                            | 3         |
| Dually fixed<br>SnO <sub>2</sub> /G@Pani      | 0.01-3.0            | 100                                         | 100             | 770                                            | 4         |
| SnO <sub>2</sub> –GO hybrid                   | 0.005-2.5           | 100                                         | 200             | 800                                            | 5         |
| Graphene<br>nanoribbons/SnO <sub>2</sub>      | 0.01-2.5            | 100                                         | 50              | 825                                            | 6         |
| 3D-G/SnO <sub>2</sub> @C                      | 0.005-3             | 100                                         | 100             | 820                                            | 7         |
| N-doped G-SnO <sub>2</sub><br>Sandwich Papers | 0.005-3             | 50                                          | 50              | 910                                            | 8         |
| SnO <sub>2</sub> Quantum<br>Dots@GO           | 0.01-3              | 100                                         | 100             | 1121                                           | 9         |
| SnO <sub>2</sub> /graphene                    | 0.01-2.5            | 100                                         | 200             | 830                                            | 10        |

| SnO <sub>2</sub> @C@GS                          | 0.01-2   | 200  | 100 | 830 | 11 |
|-------------------------------------------------|----------|------|-----|-----|----|
| SnO <sub>2</sub> -HNS/G                         | 0.005-3  | 500  | 300 | 696 | 12 |
| Polyaniline<br>@SnO <sub>2</sub><br>@Graphene   | 0.01-3   | 1000 | 100 | 560 | 13 |
| SnO <sub>2</sub> nanosheets<br>@graphene sheets | 0.01-1.2 | 160  | 50  | 518 | 14 |
| SnO <sub>2</sub> /RGO/C foam                    | 0.01-1.5 | 130  | 100 | 717 | 15 |
| SnO <sub>2</sub> quantum<br>dots/RGO            | 0.01-3   | 100  | 200 | 924 | 16 |
| rGO/SnO <sub>2</sub>                            | 0.01-3   | 100  | 100 | 536 | 17 |
| polydopamine-<br>coated RGO/SnO <sub>2</sub>    | 0.01-2   | 100  | 200 | 718 | 18 |
| SnO <sub>2</sub> @G@G                           | 0.01-2   | 80   | 120 | 591 | 19 |
| graphene/C-SnO <sub>2</sub>                     | 0.005-3  | 100  | 50  | 502 | 20 |

## References

- 1. S. Yang, W. Yue, J. Zhu, Y. Ren and X. Yang, *Advanced Functional Materials*, 2013, 23, 3570-3576.
- 2. S. M. Paek, E. Yoo and I. Honma, *Nano letters*, 2009, 9, 72-75.
- 3. R. Tian, Y. Zhang, Z. Chen, H. Duan, B. Xu, Y. Guo, H. Kang, H. Li and H. Liu, *Scientific reports*, 2016, 6, 19195.
- 4. Y. Dong, Z. Zhao, Z. Wang, Y. Liu, X. Wang and J. Qiu, *ACS applied materials & interfaces*, 2015, 7, 2444-2451.
- 5. H. Song, N. Li, H. Cui and C. Wang, *Journal of Materials Chemistry A*, 2013, 1, 7558.
- 6. J. Lin, Z. Peng, C. Xiang, G. Ruan, Z. Yan, D. Natelson and J. M. Tour, *ACS nano*, 2013, 7, 6001-6006.
- 7. B. Luo, T. Qiu, L. Hao, B. Wang, M. Jin, X. Li and L. Zhi, *J. Mater. Chem. A*, 2016, 4, 362-367.

- 8. X. Wang, X. Cao, L. Bourgeois, H. Guan, S. Chen, Y. Zhong, D.-M. Tang, H. Li, T. Zhai, L. Li, Y. Bando and D. Golberg, *Advanced Functional Materials*, 2012, 22, 2682-2690.
- 9. K. Zhao, L. Zhang, R. Xia, Y. Dong, W. Xu, C. Niu, L. He, M. Yan, L. Qu and L. Mai, *Small*, 2016, 12, 588-594.
- 10. S. J. Prabakar, Y. H. Hwang, E. G. Bae, S. Shim, D. Kim, M. S. Lah, K. S. Sohn and M. Pyo, *Adv Mater*, 2013, 25, 3307-3312.
- 11. X. Zhou, W. Liu, X. Yu, Y. Liu, Y. Fang, S. Klankowski, Y. Yang, J. E. Brown and J. Li, *ACS applied materials & interfaces*, 2014, 6, 7434-7443.
- 12. X. S. Zhou, Y. X. Yin, L. J. Wan and Y. G. Guo, *Journal of Materials Chemistry*, 2012, 22, 17456-17459.
- 13. F. Ye, B. Zhao, R. Ran and Z. Shao, *Journal of Power Sources*, 2015, 290, 61-70.
- 14. S. Ding, D. Luan, F. Y. C. Boey, J. S. Chen and X. W. Lou, *Chemical communications*, 2011, 47, 7155.
- 15. H. Tao, S. Zhu, L. Xiong, X. Yang and L. Zhang, *ChemElectroChem*, 2016, 3, 1063-1071.
- 16. C. Zhu, S. Zhu, K. Zhang, Z. Hui, H. Pan, Z. Chen, Y. Li, D. Zhang and D. W. Wang, *Scientific reports*, 2016, 6, 25829.
- 17. D. Zhou, W.-L. Song, X. Li and L.-Z. Fan, *Electrochimica Acta*, 2016, 207, 9-15.
- 18. L. Wang, D. Wang, Z. Dong, F. Zhang and J. Jin, *Nano letters*, 2013, 13, 1711-1716.
- 19. J. Zhu, G. Zhang, X. Yu, Q. Li, B. Lu and Z. Xu, *Nano Energy*, 2014, 3, 80-87.
- 20. M. Shahid, N. Yesibolati, M. C. Reuter, F. M. Ross and H. N. Alshareef, *Journal of Power Sources*, 2014, 263, 239-245.