## **Electronic Supplementary Information for**

## Facile synthesis of hierarchical fern leaf-like Sb and its application as additive-free anode for fast reversible Na-ion storage

Liying Liang,<sup>a</sup> Yang Xu,<sup>a</sup> Yueliang Li,<sup>b</sup> Huishuang Dong,<sup>c</sup> Min Zhou,<sup>a</sup> Huaping Zhao,<sup>a</sup> Ute Kasier<sup>b</sup> and Yong Lei<sup>a,c,\*</sup>

<sup>a</sup> Institute of Physics & IMN MacroNano (ZIK), Ilmenau University of Technology, Professor Schmidt Strasse 26, 98693 Ilmenau, Germany. \*E-mail: yong.lei@tuilmenau.de

 <sup>b</sup> Central Facility for Electron Microscopy, Electron Microscopy Group of Materials Science, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
 <sup>c</sup> Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.



Fig. S1 Scheme illustration of the formation of fern leaf-like Sb on Ti foil.



**Fig. S2** Fern leaf-like Sb prepared in different electrodeposition time: (a) 3 min, (b) 5 min, (c) 10 min, (d) 15 min.

| Materials                                             | Current density      | Reversible Capacity (mAh g <sup>-1</sup> ) |                         |                    |
|-------------------------------------------------------|----------------------|--------------------------------------------|-------------------------|--------------------|
|                                                       | (A g <sup>-1</sup> ) | 2 <sup>nd</sup> cycle                      | 150 <sup>th</sup> cycle | Capacity retention |
| Bi <sub>0.36</sub> Sb <sub>0.64</sub> -C <sup>1</sup> | 0.2                  | ~494                                       | ~320                    | ~64.8%             |
| Sb/C fibers <sup>2</sup>                              | 0.1                  | ~422                                       | ~380                    | ~90%               |
| rGO/nano Sb composite <sup>3</sup>                    | 0.328                | ~590                                       | ~528                    | ~89.5%             |
| Sb/MWCNT nanocomposite4                               | 0.2                  | ~502                                       | ~382 (120th)            | ~76.1%             |
| Porous Sb/Cu <sub>2</sub> Sb <sup>5</sup>             | 0.066                | ~616                                       | ~485 (120th)            | ~78.7%             |
| Bulk Sb <sup>6</sup>                                  | 0.33                 | ~540                                       | ~570                    | ~105.6%            |
| Sb@C coaxial nanotubes7                               | 0.1                  | ~500                                       | ~410                    | ~82%               |
| Nanoporous Sb <sup>8</sup>                            | 0.1                  | ~630                                       | ~600                    | ~95.2%             |
| Sb-NiSb-Ni heterostructures9                          | 0.066                | ~500                                       | ~450                    | ~90%               |
| Rod-like Sb-C composite <sup>10</sup>                 | 0.05                 | ~560                                       | ~450 (110th)            | ~80.4%             |
| Sb porous hollow microspheres <sup>11</sup>           | 0.66                 | ~575                                       | ~502                    | ~87.4%             |
| Sb/graphene <sup>12</sup>                             | 0.328                | ~600                                       | ~530                    | ~88.3%             |
| Sb nanocrystals <sup>13</sup>                         | 0.66                 | ~600                                       | ~580 (100th)            | ~96.7%             |
| Fern leaf-like Sb                                     | 0.5                  | ~612                                       | ~589                    | ~96.2%             |

**Table S1** Cycling performance comparison of the as-prepared fern leaf-like Sb with some previously reported Sb-based anodes.

## References

1. Y. Zhao and A. Manthiram, Chem. Mater., 2015, 27, 3096-3101.

Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu and C. Wang, *ACS Nano*, 2013, 7, 6378-6386.

3. C. Nithya and S. Gopukumar, J. Mater. Chem. A, 2014, 2, 10516-10525.

4. X. Zhou, Z. Dai, J. Bao and Y. G. Guo, J. Mater. Chem. A, 2013, 1, 13727-13731.

5. D. H. Nam, K. S. Hong, S. J. Lim and H. S. Kwon, J. Power Sources, 2014, 247, 423-427.

6. A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano and L. Monconduit, J. Am. Chem. Soc., 2012, 134, 20805-20811.

7. Z. Liu, X.-Y. Yu, X. Lou and U. Paik, Energy Environ. Sci., 2016, 9, 2314-2318.

- 8. S. Liu, J. Feng, X. Bian, J. Liu and H. Xu, Energy Environ. Sci., 2016, 9, 1229-1236.
- C. W. Lee, J.-C. Kim, S. Park, H. J. Song and D.-W. Kim, *Nano Energy*, 2015, **15**, 479-489.
   L. Fan, J. Zhang, J. Cui, Y. Zhu, J. Liang, L. Wang and Y. Qian, *J. Mater. Chem. A*, 2013, **3**, 3276-3280.
- H. Hou, M. Jing, Y. Yang, Y. Zhang, Y. Zhu, W. Song, X. Yang and X. Ji, *J. Mater. Chem. A*, 2015, 3, 2971-2977.
- 12. C. Nithya and S. Gopukumar, J. Mater. Chem. A, 2014, 2, 10516-10525.
- 13. M. He, K. Kravchyk, M. Walter and M. V. Kovalenko, Nano Lett., 2014, 14, 1255-1262.



Fig. S3 SEM image of fern leaf-like Sb after 100 cycles at 0.5 A  $g^{-1}$ .







Fig. S5 SEM images of layered P2-Na<sub>2/3</sub>Ni<sub>1/3</sub>Mn<sub>2/3</sub>O<sub>2</sub>.



**Fig. S6** Electrochemical performance of layered P2-Na<sub>2/3</sub>Ni<sub>1/3</sub>Mn<sub>2/3</sub>O<sub>2</sub> in a Na cell. (a) Cyclic voltammetry at a scan rate of 0.1 mV s<sup>-1</sup> between 1.5 to 4.0 V (*vs.* Na<sup>+</sup>/Na). (b) Cycling performance at a current density of 30 mA g<sup>-1</sup>, and (c) Galvanostatic voltage profiles in different cycles between 2.7 to 4.0 V (*vs.* Na<sup>+</sup>/Na).



Fig. S7 (a) XRD pattern and (b) SEM image of  $Na_3V_2(PO_4)_3/C$ .



Fig. S8 Electrochemical performance of  $Na_3V_2(PO_4)_3/C$  cathode. (a) Cyclic voltammetry at a scan rate of 0.1 mV s<sup>-1</sup> between 1.7 to 4.0 V (*vs.* Na<sup>+</sup>/Na). (b) Galvanostatic charge/discharge voltage profile, and (c) cycling performance at a current density of 80 mA g<sup>-1</sup> between 2.7 to 4.0 V (*vs.* Na<sup>+</sup>/Na).



**Fig. S9** Electrochemical performance of fern leaf-like Sb//Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>/C full cell. (a) CV curves at a scan rate of 0.3 mV s<sup>-1</sup>. (b) Cycling performance at a current density of 0.5 A g<sup>-1</sup> (with respect to the anode weight). (c) Rate capability (with respect to the anode weight) at various current densities from 0.2 to 10 A g<sup>-1</sup>. (d) Charge/discharge voltage profiles at various current densities from 0.2 to 10 A g<sup>-1</sup>.