Electronic Supplementary Information (ESI)

Graphene-coated hybrid electrocatalysts derived from bimetallic metal-organic framework for efficient hydrogen generation

Xiao Li,^a Liu Yang,^a Tan Su,^{*b} Xinlong Wang,^a Chunyi Sun,^{*a} and Zhongmin Su^{*a}

^aInstitute of Functional Material Chemistry, Local United Engineering Lab for Power Battery, Northeast Normal University, Changchun, 130024 Jilin, People's Republic of China. ^bInstitute of Theoretical Chemistry, Jilin University, Changchun 130021, P. R. China.

*E-mail: zmsu@nenu.edu.cn

Table of Contents

- 1. Crystal structure and physical characterization of NiMo-MOF
- 2. Physical characterization of $NiMo_2C@C$
- 3. Additional electrochemical experiments of NiMo₂C@C
- 4. Comparison of HER parameters of different non-Pt catalysts.

1. Crystal structure and physical characterization of NiMo-MOF

1.1 X-ray Crystallographic Analysis

X-ray single crystal data collection of NiMo-MOF was botained on a Bruker SMART APEX II CCD diffractometer equipped with a graphite monochromator using Mo-K α radiation ($\lambda = 0.71073$ Å) at 293 K. A multiscan technique was used to perform adsorption corrections. All the structures were solved using direct methods and refined using the full-matrix least-squares method on F² with anisotropic thermal parameters for all non-hydrogen atoms using the SHELXL-97 program.¹ All hydrogen atoms were located in calculated positions and refined isotropically. In the NiMo-MOF, the disordered atoms O1A and O1B, O2A and O2B were split over two sites with occupancy of 0.5 and were anisotropically refined. In the NiMo-MOF, free water molecules were highly disordered, and we failed to locate and refine the solvent peaks. Then, we used the SQUEEZE routine of PLATON to remove the diffused electron densities resulting from the residual solvent molecules and further refined using the data generated.² The final formula of NiMo-MOF were determined by the combination of elemental analysis, TGA data and the SQUEEZE results. The crystallographic data for NiMo-MOF is listed in Table 1. Moreover, the selected bonds distances and bond angles are summarized in Table 2. In addition, crystallographic data of NiMo-MOF have been deposited in Cambridge Crystallographic Data Center as supplementary publication with CCDC number: 1515194.

Reference:

(1) SHELXS-97, Sheldrick, G. M. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, 64, 112-122.

(2) Spek, A. L. Acta Crystallogr. Sect. D: Biol. Crystallogr. 2009, 65, 148-155.

Table 1. Crystallographic Data for NiMo-MOF.	Table 1.	Crystallograph	ic Data for	NiMo-MOF.
--	----------	----------------	-------------	-----------

Compound	NiMo-MOF	
Chemical formula	$C_{26}H_{29}NiMoN_4O_{4.50}\\$	
Formula weigh	624.18	
Crystal system	Triclinic	
Space group	P-1	
<i>a</i> (Å)	12.673(2)	
<i>b</i> (Å)	12.7426(19)	
<i>c</i> (Å)	13.598(2)	
a (°)	115.976(2)	
eta (°)	105.206(3)	
γ (°)	102.326(3)	
V (Å ³)	1763.3(5)	
Temperature (K)	293(2)	
Ζ	2	
$D_{\text{calcd}}(\mathbf{g} \cdot \mathbf{cm}^{-3})$	1.176	
GOF on F^2	0.858	
no. of unique data	6437	
no. of params refined	346	
$R_{I}[I > 2\sigma(I)]^{a}$	0.0503	
$\mathrm{w}R_2[I > 2\sigma(I)]^b$	0.1219	
R_1^a (all data)	0.0895	
WR_2^b (all data)	0.1375	
$R_{ m int}$	0.0436	

 $\overline{{}^{a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|} \cdot {}^{b}wR_{2} = \left[\sum w(F_{0}^{2} - F_{c}^{2})^{2} / \sum w(F_{0}^{2})^{2}\right]^{1/2}$

Ni(1)-O(4)#1 2.064(3) Ni(2)-N(4)#4 2.137(4) Ni(1)-O(4) 2.064(3) Ni(2)-N(2)#5 2.153(4) Ni(1)-N(3) 2.113(4) Ni(2)-N(2)#6 2.153(4) Ni(1)-N(3)#1 2.113(4) Mo(1)-O(1) 1.650(14) Ni(1)-N(1)#1 2.136(4) Mo(1)-O(2) 1.681(15) Ni(1)-N(1)#1 2.136(4) Mo(1)-O(3) 1.740(3) Ni(2)-O(3) 2.059(3) Mo(1)-O(4) 1.827(17) Ni(2)-O(3)#2 2.059(3) Mo(1)-O(1A) 1.863(13) O(4)#1-Ni(1)-O(4) 180.0(2) O(3)#2-Ni(2)-N(4)#4 89.79(15) O(4)#1-Ni(1)-N(3) 89.96(14) N(4)#3-Ni(2)-N(2)#5 89.57(14) O(4)#1-Ni(1)-N(3)#1 90.04(14) O(3)-Ni(2)-N(2)#5 89.57(14) O(4)#1-Ni(1)-N(3)#1 89.96(14) N(4)#3-Ni(2)-N(2)#5 89.57(14) O(4)#1-Ni(1)-N(3)#1 180.0(3) N(4)#4-Ni(2)-N(2)#6 89.57(14) O(4)+Ni(1)-N(3)#1 180.0(3) N(4)#4-Ni(2)-N(2)#6 89.57(14) O(4)+Ni(1)-N(1) 90.76(14) O(3)#2-Ni(2)-N(2)#6 89.57(14)		Compound	NiMo-MOF	
Ni(1)-N(3)2.113(4)Ni(2)-N(2)#62.153(4)Ni(1)-N(3)#12.113(4)Mo(1)-O(1)1.650(14)Ni(1)-N(1)2.136(4)Mo(1)-O(2)1.681(15)Ni(1)-N(1)#12.136(4)Mo(1)-O(3)1.740(3)Ni(2)-O(3)2.059(3)Mo(1)-O(4)1.757(3)Ni(2)-O(3)#22.059(3)Mo(1)-O(1A)1.827(17)Ni(2)-N(4)#32.137(4)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(2)#589.57(14)O(4)#1-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)#1-Ni(1)-N(3)#190.04(14)O(3)-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#687.73(16)O(4)#1-Ni(1)-N(1)#190.76(14)N(2)#5-Ni(2)-N(2)#688.3(6)N(3)+Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(3)112.6(6)N(3)+Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(2A)108.0(6) <tr< th=""><th>Ni(1)-O(4)#1</th><th>2.064(3)</th><th>Ni(2)-N(4)#4</th><th>2.137(4)</th></tr<>	Ni(1)-O(4)#1	2.064(3)	Ni(2)-N(4)#4	2.137(4)
Ni(1)-N(3)#12.113(4)Mo(1)-O(1)1.650(14)Ni(1)-N(1)2.136(4)Mo(1)-O(2)1.681(15)Ni(1)-N(1)#12.136(4)Mo(1)-O(3)1.740(3)Ni(2)-O(3)2.059(3)Mo(1)-O(4)1.757(3)Ni(2)-O(3)#22.059(3)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(2)#589.57(14)O(4)#1-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)#1-Ni(1)-N(3)#190.04(14)O(3)#2-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#4-Ni(2)-N(2)#689.57(14)O(4)#1-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#689.57(14)O(4)#1-Ni(1)-N(1)90.76(14)O(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)#1-Ni(1)-N(1)86.85(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)#1-Ni(1)-N(1)#190.76(14)N(2)#5-Ni(2)-N(2)#6180.0(2)O(4)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)#1-Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1	Ni(1)-O(4)	2.064(3)	Ni(2)-N(2)#5	2.153(4)
Ni(1)-N(1)2.136(4) $Mo(1)-O(2)$ 1.681(15)Ni(1)-N(1)#12.136(4) $Mo(1)-O(3)$ 1.740(3)Ni(2)-O(3)2.059(3) $Mo(1)-O(4)$ 1.757(3)Ni(2)-O(3)#22.059(3) $Mo(1)-O(4)$ 1.827(17)Ni(2)-N(4)#32.137(4) $Mo(1)-O(1A)$ 1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(4)#4180.0(2)O(4)#1-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)#1-Ni(1)-N(3)#190.04(14)O(3)#2-Ni(2)-N(2)#590.43(14)O(4)+Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#4-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(3)#189.96(14)O(3)-Ni(2)-N(2)#689.57(14)O(4)+Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#689.57(14)O(4)+Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)+Ni(1)-N(1)#190.76(14)N(2)#5-Ni(2)-N(2)#688.36(6)O(4)+Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(3)112.6(6)N(3)+Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(4)115.5(6)O(3)+Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)115.5(6)O(3)+Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-	Ni(1)-N(3)	2.113(4)	Ni(2)-N(2)#6	2.153(4)
Ni(1)-N(1)#12.136(4)Mo(1)-O(3)1.740(3)Ni(2)-O(3)2.059(3)Mo(1)-O(4)1.757(3)Ni(2)-O(3)#22.059(3)Mo(1)-O(2A)1.827(17)Ni(2)-N(4)#32.137(4)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(4)#4180.0(2)O(4)#1-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)+Ni(1)-N(3)90.04(14)O(3)#2-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#4-Ni(2)-N(2)#592.27(16)O(4)+1-Ni(1)-N(3)#189.96(14)N(4)#4-Ni(2)-N(2)#690.43(14)O(4)-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#690.43(14)O(4)-Ni(1)-N(1)89.24(14)O(3)-#0(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#4-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)90.76(14)N(2)#5-Ni(2)-N(2)#689.57(16)O(4)+1Ni(1)-N(1)#186.85(16)N(1)-M(1)-O(2)88.3(6)N(3)+Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)+1-Ni(1)-N(1)#1180O(2)-Mo(1)-O(3)115.0(6)N(1)-Ni(1)-N(1)#1180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)	Ni(1)-N(3)#1	2.113(4)	Mo(1)-O(1)	1.650(14)
Ni(2)-O(3)2.059(3)Mo(1)-O(4)1.757(3)Ni(2)-O(3)#22.059(3)Mo(1)-O(2A)1.827(17)Ni(2)-N(4)#32.137(4)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(4)#4180.0(2)O(4)+1.Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)+1.Ni(1)-N(3)#190.04(14)O(3)#2-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#690.43(14)O(4)-Ni(1)-N(1)90.76(14)O(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)90.76(14)N(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)90.76(14)N(2)#5-Ni(2)-N(2)#689.57(16)O(4)+1.Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)+1-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)-Ni(1)-N(1)#180O(2)-Mo(1)-O(3)112.6(6)N(3)-Ni(1)-N(1)#1180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)-Ni(2)-N(4)#389.79(15)O(2)-Mo(1)-O(2A)108.0(6)O(3)-Ni(2)-N(4)#390.21(15)O(2A)	Ni(1)-N(1)	2.136(4)	Mo(1)-O(2)	1.681(15)
Ni(2)-O(3)#22.059(3)Mo(1)-O(2A)1.827(17)Ni(2)-N(4)#32.137(4)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(4)#4180.0(2)O(4)-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)+1-Ni(1)-N(3)90.04(14)O(3)#2-Ni(2)-N(2)#590.43(14)O(4)+1-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(3)#189.96(14)O(3)-Ni(2)-N(2)#689.57(14)O(4)-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#689.57(14)O(4)-Ni(1)-N(1)89.24(14)O(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)-Ni(1)-N(1)86.85(16)N(1)+Mi(1)-N(2)#687.73(16)O(4)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)-Ni(1)-N(1)#189.515(6)O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#390.21(15)O(2)-Mo(1)-O(1A)128.0(5)O(3)-Ni(2)-N(4)#39	Ni(1)-N(1)#1	2.136(4)	Mo(1)-O(3)	1.740(3)
Ni(2)-N(4)#32.137(4)Mo(1)-O(1A)1.863(13)O(4)#1-Ni(1)-O(4)180.0(2)O(3)#2-Ni(2)-N(4)#489.79(15)O(4)#1-Ni(1)-N(3)89.96(14)N(4)#3-Ni(2)-N(4)#4180.0(2)O(4)-Ni(1)-N(3)90.04(14)O(3)-Ni(2)-N(2)#589.57(14)O(4)-Ni(1)-N(3)#190.04(14)O(3)#2-Ni(2)-N(2)#590.43(14)O(4)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#587.73(16)N(3)-Ni(1)-N(3)#189.96(14)N(4)#3-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#689.57(14)O(4)-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#689.57(14)O(4)+Ni(1)-N(1)90.76(14)O(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#4-Ni(2)-N(2)#687.73(16)N(3)#1-Ni(1)-N(1)86.85(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)-Ni(1)-N(1)#190.76(14)O(1)-Mo(1)-O(2)88.3(6)N(3)#1-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)112.6(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)115.0(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(3)115.0(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-O(3)#2180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(2)-Mo(1)-O(1A)128.0(5)O(3)-Ni(2)-N(4)#39	Ni(2)-O(3)	2.059(3)	Mo(1)-O(4)	1.757(3)
O(4)#1-Ni(1)-O(4) $180.0(2)$ $O(3)#2-Ni(2)-N(4)#4$ $89.79(15)$ $O(4)#1-Ni(1)-N(3)$ $89.96(14)$ $N(4)#3-Ni(2)-N(4)#4$ $180.0(2)$ $O(4)-Ni(1)-N(3)$ $90.04(14)$ $O(3)-Ni(2)-N(2)#5$ $89.57(14)$ $O(4)+1-Ni(1)-N(3)#1$ $90.04(14)$ $O(3)#2-Ni(2)-N(2)#5$ $90.43(14)$ $O(4)+Ni(1)-N(3)#1$ $89.96(14)$ $N(4)#3-Ni(2)-N(2)#5$ $87.73(16)$ $N(3)-Ni(1)-N(3)#1$ $89.96(14)$ $N(4)#3-Ni(2)-N(2)#5$ $87.73(16)$ $N(3)-Ni(1)-N(3)#1$ $180.0(3)$ $N(4)#4-Ni(2)-N(2)#5$ $92.27(16)$ $O(4)#1-Ni(1)-N(1)$ $89.24(14)$ $O(3)-Ni(2)-N(2)#6$ $89.57(14)$ $N(3)-Ni(1)-N(1)$ $90.76(14)$ $O(3)#2-Ni(2)-N(2)#6$ $89.57(14)$ $N(3)-Ni(1)-N(1)$ $93.15(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)+1-Ni(1)-N(1)$ $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)+1-Ni(1)-N(1)#1$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $88.3(6)$ $N(3)+1-Ni(1)-N(1)#1$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $88.3(6)$ $O(4)+1-Ni(1)-N(1)#1$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $86.86(16)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)+1-Ni(1)-N(1)#1$ $86.86(16)$ $O(1)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-N(4)#3$ $90.79(15)$ $O(3)-Mo(1)-O(4)$ $113.3(6)$ $O(3)-Ni(2)-N(4)#3$ $90.21(15)$ $O(2)-Mo(1)-O(2A)$ $198.0(5)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(3)-Mo(1)-O(2A)$ $103.$	Ni(2)-O(3)#2	2.059(3)	Mo(1)-O(2A)	1.827(17)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ni(2)-N(4)#3	2.137(4)	Mo(1)-O(1A)	1.863(13)
O(4)-Ni(1)-N(3) $90.04(14)$ $O(3)-Ni(2)-N(2)#5$ $89.57(14)$ $O(4)+Ni(1)-N(3)#1$ $90.04(14)$ $O(3)#2-Ni(2)-N(2)#5$ $90.43(14)$ $O(4)-Ni(1)-N(3)#1$ $89.96(14)$ $N(4)#3-Ni(2)-N(2)#5$ $87.73(16)$ $N(3)-Ni(1)-N(3)#1$ $89.96(14)$ $N(4)#3-Ni(2)-N(2)#5$ $87.73(16)$ $O(4)+Ni(1)-N(3)#1$ $180.0(3)$ $N(4)#4-Ni(2)-N(2)#5$ $92.27(16)$ $O(4)#1-Ni(1)-N(1)$ $89.24(14)$ $O(3)-Ni(2)-N(2)#6$ $99.43(14)$ $O(4)-Ni(1)-N(1)$ $90.76(14)$ $O(3)#2-Ni(2)-N(2)#6$ $89.57(14)$ $N(3)-Ni(1)-N(1)$ $93.15(16)$ $N(4)#3-Ni(2)-N(2)#6$ $89.57(14)$ $N(3)-Ni(1)-N(1)$ $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)+Ni(1)-N(1)$ $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)+Ni(1)-N(1)$ $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $88.3(6)$ $N(3)+I-Ni(1)-N(1)$ $86.85(16)$ $O(1)-Mo(1)-O(2)$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(2)$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(3)$ $115.0(6)$ $N(3)-Ni(1)-N(1)#1$ $89.27(15)$ $O(2)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-N(4)#3$ $89.79(15)$ $O(3)-Mo(1)-O(4)$ $110.72(15)$ $O(3)-Ni(2)-N(4)#3$ $90.21(15)$ $O(2)-Mo(1)-O(2A)$ $108.0(6)$ $O(3)-Ni(2)-N(4)#4$ $90.21(15)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo($	O(4)#1-Ni(1)-O(4)	180.0(2)	O(3)#2-Ni(2)-N(4)#4	89.79(15)
$\begin{array}{c ccccc} O(4)\#1-Ni(1)-N(3)\#1 & 90.04(14) & O(3)\#2-Ni(2)-N(2)\#5 & 90.43(14) \\ O(4)-Ni(1)-N(3)\#1 & 89.96(14) & N(4)\#3-Ni(2)-N(2)\#5 & 87.73(16) \\ N(3)-Ni(1)-N(3)\#1 & 180.0(3) & N(4)\#4-Ni(2)-N(2)\#5 & 92.27(16) \\ O(4)\#1-Ni(1)-N(1) & 89.24(14) & O(3)-Ni(2)-N(2)\#6 & 89.57(14) \\ O(4)-Ni(1)-N(1) & 90.76(14) & O(3)\#2-Ni(2)-N(2)\#6 & 89.57(14) \\ N(3)-Ni(1)-N(1) & 93.15(16) & N(4)\#3-Ni(2)-N(2)\#6 & 87.73(16) \\ O(4)\#1-Ni(1)-N(1) & 86.85(16) & N(4)\#4-Ni(2)-N(2)\#6 & 87.73(16) \\ O(4)\#1-Ni(1)-N(1) & 90.76(14) & N(2)\#5-Ni(2)-N(2)\#6 & 180.0(2) \\ O(4)-Ni(1)-N(1)\#1 & 89.24(14) & O(1)-Mo(1)-O(2) & 88.3(6) \\ N(3)-Ni(1)-N(1)\#1 & 89.24(14) & O(1)-Mo(1)-O(3) & 112.6(6) \\ N(3)\#1-Ni(1)-N(1)\#1 & 86.86(16) & O(1)-Mo(1)-O(3) & 115.0(6) \\ N(3)\#1-Ni(1)-N(1)\#1 & 93.15(16) & O(2)-Mo(1)-O(4) & 115.5(6) \\ O(3)-Ni(2)-O(3)\#2 & 180 & O(2)-Mo(1)-O(4) & 113.3(6) \\ O(3)-Ni(2)-N(4)\#3 & 89.79(15) & O(3)-Mo(1)-O(4) & 108.0(6) \\ O(3)-Ni(2)-N(4)\#3 & 90.21(15) & O(1)-Mo(1)-O(2A) & 108.0(6) \\ O(3)-Ni(2)-N(4)\#4 & 90.21(15) & O(2A)-Mo(1)-O(1A) & 128.0(5) \\ O(2)-Mo(1)-O(2A) & 103.9(6) & O(3)-Mo(1)-O(2A) & 103.9(6) \\ \end{array}$	O(4)#1-Ni(1)-N(3)	89.96(14)	N(4)#3-Ni(2)-N(4)#4	180.0(2)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	O(4)-Ni(1)-N(3)	90.04(14)	O(3)-Ni(2)-N(2)#5	89.57(14)
N(3)-Ni(1)-N(3)#1180.0(3)N(4)#4-Ni(2)-N(2)#592.27(16)O(4)#1-Ni(1)-N(1)89.24(14)O(3)-Ni(2)-N(2)#690.43(14)O(4)-Ni(1)-N(1)90.76(14)O(3)#2-Ni(2)-N(2)#689.57(14)N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#687.73(16)N(3)#1-Ni(1)-N(1)86.85(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)#1-Ni(1)-N(1)#190.76(14)N(2)#5-Ni(2)-N(2)#6180.0(2)O(4)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(3)112.6(6)N(3)#1-Ni(1)-N(1)#186.86(16)O(2)-Mo(1)-O(3)115.0(6)N(1)-Ni(1)-N(1)#1180O(2)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-O(3)#2180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)#2-Ni(2)-N(4)#390.21(15)O(2)-Mo(1)-O(2A)108.0(6)O(3)-Ni(2)-N(4)#490.21(15)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)	O(4)#1-Ni(1)-N(3)#1	90.04(14)	O(3)#2-Ni(2)-N(2)#5	90.43(14)
$\begin{array}{llllllllllllllllllllllllllllllllllll$	O(4)-Ni(1)-N(3)#1	89.96(14)	N(4)#3-Ni(2)-N(2)#5	87.73(16)
O(4)-Ni(1)-N(1) $90.76(14)$ $O(3)#2-Ni(2)-N(2)#6$ $89.57(14)$ $N(3)-Ni(1)-N(1)$ $93.15(16)$ $N(4)#3-Ni(2)-N(2)#6$ $92.27(16)$ $N(3)#1-Ni(1)-N(1)$ $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)+Ni(1)-N(1)$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $180.0(2)$ $O(4)-Ni(1)-N(1)#1$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $180.0(2)$ $O(4)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(2)$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $86.86(16)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)+Ni(1)-N(1)#1$ $93.15(16)$ $O(2)-Mo(1)-O(3)$ $115.0(6)$ $N(1)-Ni(1)-N(1)#1$ 180 $O(1)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-O(3)#2$ 180 $O(2)-Mo(1)-O(4)$ $113.3(6)$ $O(3)-Ni(2)-N(4)#3$ $89.79(15)$ $O(3)-Mo(1)-O(4)$ $110.72(15)$ $O(3)-Ni(2)-N(4)#3$ $90.21(15)$ $O(2A)-Mo(1)-O(1A)$ $128.0(5)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$	N(3)-Ni(1)-N(3)#1	180.0(3)	N(4)#4-Ni(2)-N(2)#5	92.27(16)
N(3)-Ni(1)-N(1)93.15(16)N(4)#3-Ni(2)-N(2)#692.27(16)N(3)#1-Ni(1)-N(1)86.85(16)N(4)#4-Ni(2)-N(2)#687.73(16)O(4)#1-Ni(1)-N(1)#190.76(14)N(2)#5-Ni(2)-N(2)#6180.0(2)O(4)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(3)112.6(6)N(3)+1-Ni(1)-N(1)#193.15(16)O(2)-Mo(1)-O(3)115.0(6)N(1)-Ni(1)-N(1)#193.15(16)O(2)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-O(3)#2180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)#2-Ni(2)-N(4)#390.21(15)O(2A)-Mo(1)-O(A)128.0(5)O(3)-Ni(2)-N(4)#490.21(15)O(2A)-Mo(1)-O(A)128.0(5)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	O(4)#1-Ni(1)-N(1)	89.24(14)	O(3)-Ni(2)-N(2)#6	90.43(14)
N(3)#1-Ni(1)-N(1) $86.85(16)$ $N(4)#4-Ni(2)-N(2)#6$ $87.73(16)$ $O(4)#1-Ni(1)-N(1)#1$ $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $180.0(2)$ $O(4)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(2)$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $86.86(16)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)#1-Ni(1)-N(1)#1$ $93.15(16)$ $O(2)-Mo(1)-O(3)$ $115.0(6)$ $N(1)-Ni(1)-N(1)#1$ 180 $O(1)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-O(3)#2$ 180 $O(2)-Mo(1)-O(4)$ $113.3(6)$ $O(3)-Ni(2)-N(4)#3$ $89.79(15)$ $O(3)-Mo(1)-O(4)$ $110.72(15)$ $O(3)-Ni(2)-N(4)#3$ $90.21(15)$ $O(2)-Mo(1)-O(2A)$ $108.0(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$	O(4)-Ni(1)-N(1)	90.76(14)	O(3)#2-Ni(2)-N(2)#6	89.57(14)
O(4)#1-Ni(1)-N(1)#1 $90.76(14)$ $N(2)#5-Ni(2)-N(2)#6$ $180.0(2)$ $O(4)-Ni(1)-N(1)#1$ $89.24(14)$ $O(1)-Mo(1)-O(2)$ $88.3(6)$ $N(3)-Ni(1)-N(1)#1$ $86.86(16)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)#1-Ni(1)-N(1)#1$ $93.15(16)$ $O(2)-Mo(1)-O(3)$ $115.0(6)$ $N(1)-Ni(1)-N(1)#1$ 180 $O(1)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-O(3)#2$ 180 $O(2)-Mo(1)-O(4)$ $113.3(6)$ $O(3)-Ni(2)-N(4)#3$ $89.79(15)$ $O(3)-Mo(1)-O(4)$ $110.72(15)$ $O(3)-Ni(2)-N(4)#3$ $90.21(15)$ $O(2A)-Mo(1)-O(A)$ $108.0(6)$ $O(3)-Ni(2)-N(4)#4$ $90.21(15)$ $O(2A)-Mo(1)-O(1A)$ $128.0(5)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$	N(3)-Ni(1)-N(1)	93.15(16)	N(4)#3-Ni(2)-N(2)#6	92.27(16)
O(4)-Ni(1)-N(1)#189.24(14)O(1)-Mo(1)-O(2)88.3(6)N(3)-Ni(1)-N(1)#186.86(16)O(1)-Mo(1)-O(3)112.6(6)N(3)#1-Ni(1)-N(1)#193.15(16)O(2)-Mo(1)-O(3)115.0(6)N(1)-Ni(1)-N(1)#1180O(1)-Mo(1)-O(4)115.5(6)O(3)-Ni(2)-O(3)#2180O(2)-Mo(1)-O(4)113.3(6)O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)#2-Ni(2)-N(4)#390.21(15)O(1)-Mo(1)-O(2A)108.0(6)O(3)-Ni(2)-N(4)#490.21(15)O(2A)-Mo(1)-O(1A)128.0(5)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	N(3)#1-Ni(1)-N(1)	86.85(16)	N(4)#4-Ni(2)-N(2)#6	87.73(16)
N(3)-Ni(1)-N(1)#1 $86.86(16)$ $O(1)-Mo(1)-O(3)$ $112.6(6)$ $N(3)#1-Ni(1)-N(1)#1$ $93.15(16)$ $O(2)-Mo(1)-O(3)$ $115.0(6)$ $N(1)-Ni(1)-N(1)#1$ 180 $O(1)-Mo(1)-O(4)$ $115.5(6)$ $O(3)-Ni(2)-O(3)#2$ 180 $O(2)-Mo(1)-O(4)$ $113.3(6)$ $O(3)-Ni(2)-N(4)#3$ $89.79(15)$ $O(3)-Mo(1)-O(4)$ $110.72(15)$ $O(3)+Ni(2)-N(4)#3$ $90.21(15)$ $O(1)-Mo(1)-O(2A)$ $108.0(6)$ $O(3)-Ni(2)-N(4)#4$ $90.21(15)$ $O(2)-Mo(1)-O(1A)$ $128.0(5)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(2)-Mo(1)-O(2A)$ $19.8(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$ $O(3)-Mo(1)-O(2A)$ $103.9(6)$	O(4)#1-Ni(1)-N(1)#1	90.76(14)	N(2)#5-Ni(2)-N(2)#6	180.0(2)
N(3)#1-Ni(1)-N(1)#1 93.15(16) O(2)-Mo(1)-O(3) 115.0(6) N(1)-Ni(1)-N(1)#1 180 O(1)-Mo(1)-O(4) 115.5(6) O(3)-Ni(2)-O(3)#2 180 O(2)-Mo(1)-O(4) 113.3(6) O(3)-Ni(2)-N(4)#3 89.79(15) O(3)-Mo(1)-O(4) 110.72(15) O(3)#2-Ni(2)-N(4)#3 90.21(15) O(1)-Mo(1)-O(2A) 108.0(6) O(3)-Ni(2)-N(4)#4 90.21(15) O(2A)-Mo(1)-O(1A) 128.0(5) O(2)-Mo(1)-O(2A) 19.8(6) O(2)-Mo(1)-O(2A) 19.8(6) O(3)-Mo(1)-O(2A) 103.9(6) O(3)-Mo(1)-O(2A) 103.9(6)	O(4)-Ni(1)-N(1)#1	89.24(14)	O(1)-Mo(1)-O(2)	88.3(6)
N(1)-Ni(1)-N(1)#1180 $O(1)-Mo(1)-O(4)$ 115.5(6) $O(3)-Ni(2)-O(3)#2$ 180 $O(2)-Mo(1)-O(4)$ 113.3(6) $O(3)-Ni(2)-N(4)#3$ 89.79(15) $O(3)-Mo(1)-O(4)$ 110.72(15) $O(3)#2-Ni(2)-N(4)#3$ 90.21(15) $O(1)-Mo(1)-O(2A)$ 108.0(6) $O(3)-Ni(2)-N(4)#4$ 90.21(15) $O(2A)-Mo(1)-O(1A)$ 128.0(5) $O(2)-Mo(1)-O(2A)$ 19.8(6) $O(2)-Mo(1)-O(2A)$ 19.8(6) $O(3)-Mo(1)-O(2A)$ 103.9(6) $O(3)-Mo(1)-O(2A)$ 103.9(6)	N(3)-Ni(1)-N(1)#1	86.86(16)	O(1)-Mo(1)-O(3)	112.6(6)
O(3)-Ni(2)-O(3)#2 180 O(2)-Mo(1)-O(4) 113.3(6) O(3)-Ni(2)-N(4)#3 89.79(15) O(3)-Mo(1)-O(4) 110.72(15) O(3)#2-Ni(2)-N(4)#3 90.21(15) O(1)-Mo(1)-O(2A) 108.0(6) O(3)-Ni(2)-N(4)#4 90.21(15) O(2A)-Mo(1)-O(1A) 128.0(5) O(2)-Mo(1)-O(2A) 19.8(6) O(2)-Mo(1)-O(2A) 19.8(6) O(3)-Mo(1)-O(2A) 103.9(6) O(3)-Mo(1)-O(2A) 103.9(6)	N(3)#1-Ni(1)-N(1)#1	93.15(16)	O(2)-Mo(1)-O(3)	115.0(6)
O(3)-Ni(2)-N(4)#389.79(15)O(3)-Mo(1)-O(4)110.72(15)O(3)#2-Ni(2)-N(4)#390.21(15)O(1)-Mo(1)-O(2A)108.0(6)O(3)-Ni(2)-N(4)#490.21(15)O(2A)-Mo(1)-O(1A)128.0(5)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	N(1)-Ni(1)-N(1)#1	180	O(1)-Mo(1)-O(4)	115.5(6)
O(3)#2-Ni(2)-N(4)#390.21(15)O(1)-Mo(1)-O(2A)108.0(6)O(3)-Ni(2)-N(4)#490.21(15)O(2A)-Mo(1)-O(1A)128.0(5)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	O(3)-Ni(2)-O(3)#2	180	O(2)-Mo(1)-O(4)	113.3(6)
O(3)-Ni(2)-N(4)#490.21(15)O(2A)-Mo(1)-O(1A)128.0(5)O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	O(3)-Ni(2)-N(4)#3	89.79(15)	O(3)-Mo(1)-O(4)	110.72(15)
O(2)-Mo(1)-O(2A)19.8(6)O(2)-Mo(1)-O(2A)19.8(6)O(3)-Mo(1)-O(2A)103.9(6)O(3)-Mo(1)-O(2A)103.9(6)	O(3)#2-Ni(2)-N(4)#3	90.21(15)	O(1)-Mo(1)-O(2A)	108.0(6)
O(3)-Mo(1)-O(2A) 103.9(6) O(3)-Mo(1)-O(2A) 103.9(6)	O(3)-Ni(2)-N(4)#4	90.21(15)	O(2A)-Mo(1)-O(1A)	128.0(5)
	O(2)-Mo(1)-O(2A)	19.8(6)	O(2)-Mo(1)-O(2A)	19.8(6)
O(4)-Mo(1)-O(2A) 105.2(5) O(4)-Mo(1)-O(2A) 105.2(5)	O(3)-Mo(1)-O(2A)	103.9(6)	O(3)-Mo(1)-O(2A)	103.9(6)
	O(4)-Mo(1)-O(2A)	105.2(5)	O(4)-Mo(1)-O(2A)	105.2(5)

Table 2. Selected Bonds Lengths (Å) and Angles (°) for compounds NiMo-MOF

Symmetry codes: for compound **NiMo-MOF**: #1 –x + 1, -y + 1, -z + 2; #2 –x + 1, -y + 2, -z + 2; #3 –x + 1, -y + 1, -z + 1; #4 x, y + 1, z + 1; #5 x + 1, y + 1, z; #6 -x, -y + 1, -z + 2.

1.2 Structure of compound NiMo-MOF.

Fig. S1 (a) Ni(II) coordination environments of **NiMo-MOF**. Symmetry codes: (#1) 1 - x + 1, -y + 1, -z + 2. (b) 1D chain of **NiMo-MOF**. (c) and (d) 3D framework of **NiMo-MOF** with 1D channels running along *a* and *b* axes. (e) 3D uninodal 6-connected net with a (4¹²•6³) topology of **NiMo-MOF**. All hydrogen atoms are omitted for clarity.

X-ray determination has revealed that **NiMo-MOF** crystalized in the triclinic system with P-1 space group. The asymmetric unit includes one Ni (II) ion, one Mo (VI) ion and two bpp ligands are shown in Figure S1a. Ni1 adpots a hexacoordinated octahedral fashion geometry by connecting to two oxygen atoms and four nitrogen atoms from two bpp ligands. The average Ni-O and Ni-N distances are from 2.059 to 2.064(3) Å and from 2.113(4) to 2.153(4) Å, respectively. Mol shows MoO₄ tetrahedron coordination configuration, and each molybdenum centre is coordinated with two bridging oxygen atoms (O_b) and two terminal oxygen atoms (O_t). The V-O_t distances of 1.650(14) and 1.681(15) Å are slightly shorter than the V-O_b distances of 1.740(3) and 1.757(3) Å. The Ni ions and adjacent Mo ions are connected through the bridging oxygen atoms to form a one dimensional chain, displayed in Fig S1b. Then, the one dimensional chains are further linked by bpp ligands to assemble into a 3D framework with 1D channels along *a*, *b* and *c* axes (Fig. S1c and S1d). Topologically, **NiMo-MOF** is a uninodal 6-connected net with the Schäfli symbol of $\{4^{12} \cdot 6^3\}$ as depicted in Figure. S3e.

1.3 Physical characterization of NiMo-MOF.

Fig. S2 Experimental (blue), simulated (black) PXRD patterns for compound NiMo-MOF.

Fig. S3 The TGA curves for compound 1

To study the thermal stabilities of NiMo-MOF, the thermogravimetric analyses were carried out under N_2 atmosphere from room temperature to 800 °C with a heating rate of 10 °C min⁻¹. NiMo-MOF shows a slow weight loss of 1.56% before 280 °C, which corresponds to the loss of solvent water molecules (calculated 1.44%). Then with the increase of temperature, the framework collapsed and decomposed. The residues are NiO and MoO₃ (experimental: 32.28% and calculated 33.13%).

2. Physical characterization of NiMo₂C@C

Fig. S4 (a) and (b) TEM images of NiMo $_2$ C@C, displaying that Ni/Mo $_2$ C nanoparticles are well coated with graphitized carbon layers.

Fig. S5 Raman spectrum of NiMo₂C@C with $I_G/I_D = 1.2$, indicating the partial graphitization at 700 °C.

Fig. S6 X-ray photoelectron spectra of NiMo₂C@C.

Fig. S7 The high resolution N 1s XPS of NiMo₂C@C.

Fig. S8 The high resolution C 1s XPS of NiMo₂C@C. The position of the C 1s line ascribed to C=C/C-C is 284.6 eV, downshift by about 0.4 eV compared with GO (285.0 eV), which indicates the charge transfer between NiMo₂C and graphene.

Fig. S9 (a) N₂ adsorption-desorption isotherms. (b) The pore-size distribution of NiMo₂C@C.

3. Additional electrochemical experiment of NiMo₂C@C

Fig. S10 (a) and (b) Polarization curves of $NiMo_2C@C$ with different mass loadings on a glassy carbon electrode in 0.5M H₂SO₄ and 1M KOH.

Fig.S11 (a) and (b) Polarization curves of $NiMo_2C@C$ with different carburizing time at 700 °C on a glassy carbon electrode in 0.5M H₂SO₄ and 1M KOH.

Fig.S12 (a) and (b) Polarization curves of $NiMo_2C@C$ with different carburizing temperatures on a glassy carbon electrode in 0.5M H₂SO₄ and 1M KOH.

Fig. S13 PXRD curves of NiMo₂C@C catalyst (black) and NiMo₂C@C catalyst of mixture (blue).

Fig. S14 (a) TEM image of NiMo₂C@C (mixture) (inset the particle size distribution of Ni/Mo₂C in NiMo₂C@C (mixture)), displaying Ni/Mo₂C nanoparticles possess a diameter range from 50nm to 160nm, which is much larger than the Ni/Mo₂C nanoparticles in NiMo₂C@C catalyst; (b-d) HRTEM images of NiMo₂C@C (mixture). The d-spacing distance of multiple graphene layers, the lattice plane (111) of Mo₂C (JCPDS no. 15-0457) and Ni (JCPDS no. 04-0850) is about 0.36nm, 0.24nm and 0.20nm, respectively, which is well accordant with the NiMo₂C@C catalyst.

Fig. S15 The energy dispersive spectrum (EDS) of $NiMo_2C@C$ (mixture). The peaks corresponding to C, N, Mo and Ni elements are observed.

Fig. S16 X-ray photoelectron spectra of NiMo₂C@C (mixture).

Fig. S17 (a) - (d) XPS spectra of Ni 2p peaks, Mo 3d peaks, C1s peaks and N 1s of NiMo₂C@C (mixture). The Ni 2p XPS spectrum of NiMo₂C@C (mixture) also displays the coexistence of Ni⁰ (852.8 eV) and Ni²⁺ (853.7 eV). The Mo 3d XPS spectrum exhibits the existence of Mo⁰ (227.3 eV), Mo²⁺ (228.4 eV and 231.6 eV) and Mo⁶⁺ (235 eV). The peak located at 284.6 eV of C 1s line is C=C/C-C. The peak located at 398.2 eV of N 1s XPS can be ascribed to pyridinic nitrogen derived from the bpp ligands. Therefore, the NiMo₂C@C (mixture) shows same binding state with NiMo₂C@C.

Fig. S18 PXRD curves of mixture with glucose.

Fig. S19 PXRD curves of mixture with urea.

Fig.S20 (a) and (b) Polarization curves of $NiMo_2C@C$ (mixture), mixture with glucose and mixture with urea on a glassy carbon electrode in 0.5M H₂SO₄ and 1M KOH.

Fig. S21 (a) and (b) Polarization curves after continuous potential sweeps at 50 mV s⁻¹ in 0.5M H₂SO₄ and 1M KOH. (c) and (d) Time-dependent current density curves under $\eta = 180$ m V in 0.5M H₂SO₄ and 1M KOH.

4. Comparison of HER parameters of different non-Pt catalysts.

Catalysts	Loading mass (mg cm ⁻²)	Current density (<i>j</i> , mA cm ⁻²)	η at correspongding j (mV)	Tafel slope (mV decade ⁻¹)	Ref.
NiMo ₂ C@C	0.15	10	169	100	This work
Mo ₂ C/CNT	2.0	10	152	55.2	S1
Mo ₂ C/CNT-graphene	0.65-0.67	10	130	58	S2
Co _{0.6} Mo _{1.4} N ₂	0.24	10	200	/	S3
MoS _x /graphene/Ni foam	5.01	10	141	42.8	S4
Mo _x C/Ni	-	10	~ 150	_	85
NiMoN _x nanosheets	0.25	2	170	35.9	S6
Mo ₂ C-carbon nanocomposites	0.25	10	147	110-235	S7
Porous MoC _x nano-octahedrons	0.8	10	142	53	S8
MoO ₂ P _x /Mo	-	10	135	62	S9
Mo ₂ C and MoB microparticles	1.4-2.5	20	~225	55-56	S10

 $\label{eq:comparison} \mbox{Table S3 Comparison for HER activity in acidic solutions for $NiMo_2C@C$ with other electrocatalysts. }$

Catalysts	Loading mass (mg cm ⁻²)	Current density (<i>j</i> , mA cm ⁻²)	η at correspongding j (mV)	Tafel slope (mV decade ⁻¹)	Ref.
NiMo ₂ C@C	0.15	10	181	84	This work
Porous MoC _x nano-octahedrons	0.8	10	151	59	S8
Mo ₂ C and MoB microparticles	0.8-2.3	20	210-240	54-59	S10
Ni-Mo nanopowder	1	10	~80	-	S11
NiO/Ni-CNT	0.28	10	80	82	S12
NiMo ₂ C/NF	-	10	150	36.8	S13
Ni/Mo ₂ C-PC	0.5	10	179	101	S14
CoO _x @CN	0.12	10	232	115	S15
Mo ₂ C-NCNT	3	10	257	71	S16
Mo ₂ C	0.009	10	270	67	S17
MoB	2.3	10	~220	59	S18

Table S4 Comparison for HER activity in basic solutions for $NiMo_2C@C$ with other electrocatalysts.

Reference

S1. W. F. Chen, C. H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. T. Muckerman, R. R. Adzic, *Energy Environ. Sci*, 2013, 6, 943-951.

S2. D. H. Youn, S. Han, J. Y. Kim, J. Y. Kim, H. Park, S. H. Choi, J. S. Lee, ACS nano, 2014, 8, 5164-5173.

S3. B. Cao, G. M. Veith, J. C. Neuefeind, R. R. Adzic, P. G. Khalifah, J. Am. Chem. Soc., 2013, 135, 19186-19192.

S4. Y. H. Chang, C. T. Lin, T. Y. Chen, C. L. Hsu, Y. H. Lee, W. Zhang, L. J. Li, *Adv. Mater.*, **2013**, *25*, 756-760.

S5. J. Zhang, X. Meng, J. Zhao, Z. Zhu, ChemCatChem, 2014, 6, 2059 - 2064.

S6. W. F. Chen, K. Sasaki, C. Ma, A. I. Frenkel, N. Marinkovic, J. T. Muckerman, R. R.Adzic, Angew. Chem. Int. Ed., 2012, 51, 6131-6135.

S7. N. S. Alhajri, D. H. Anjum, K. Takanabe, J. Mater. Chem. A., 2014, 2, 10548-10556.

S8. H. B. Wu, B. Y. Xia, L. Yu, X. Y. Yu, X. W. Lou, Nat. Commun. 2015, 6, 6512-6519

S9. X. Xie, R. Yu, N. Xue, A. B. Yousaf, H. Du, K. Liang, N. Jiang and A-W. Xu, J. Mater. Chem. A, 2016, 4, 1647–1652

S10. H. Vrubel, X.L. Hu, Angew. Chem. Int. Ed., 2012,124, 12875-12878.

S11. J. R. McKone, B. F. Sadtler, C. A. Werlang, N. S. Lewis, H. B. Gray, 2012, ACS Catal., 3, 166-169.

S12. M. Gong, W. Zhou, M. C. Tsai, J. G. Zhou, M. Y. Guan, M. C. Lin, B. Zhang, Y.F. Hu, D.Y. Wang, J. Yang, S. J. Pennycook, B. J. Hwang, H. J. Dai, **2014**, *Nat. Commun.*, 5.

S13. K. Xiong, L. Li, L. Zhang, W. Ding, L. S. Peng, Y. Wang, Z. D. Wei, J. Mater. Chem. A., 2015, 3, 1863-1867.

S14. Z. Y. Yu, Y. Duan, M. R. Gao, C. C. Lang, Y. R. Zheng, S. H. Yu, Chemical Science. 2016.

S15. H. Y. Jin, J. Wang, D. F. Su, Z. Z. Wei, Z. F. Pang, Y. Wang, J. Am. Chem. Soc., 2015, 137, 2688-2694.

S16. K. Zhang, Y. Zhao, D. Y. Fu, Y. J. Chen, J. Mater. Chem. A., 2015, 3, 5783-5788.

S17. C. G. Morales-Guio, K. Thorwarth, B. Niesen, L. Liardet, J.Patscheider, C. Ballif, X.I. Hu J. Am. Chem. Soc., 2015, 137, 7035-7038.

S18. H. Vrubel, X.L. Hu, Angew. Chem. Int. Ed., 2012, 51, 12703-12706.