Supporting Information

Synthesis of Nickel Chalcogenide Hollow Spheres Using L-Cysteine-assisted Hydrothermal for efficient supercapacitor electrode

Min-Lu^a, Xue-Ping Yuan^a, Xiao-Hui Guan^a, Guang-Sheng Wang^{b*}

^aSchool of Chemical Engineering, Northeast Electric Power University, Jilin 132000,

PR China

^bKey Laboratory of Bio-Inspired Smart Interfacial Science and Technology of

Ministry of Education, School of Chemistry and Environment, Beihang

University, Beijing 100191, PR China

*Email - wanggsh@buaa.edu.cn

Supplementary Equations

$$NiS_2 + H_2O + \frac{1}{2}O_2 \rightarrow Ni(OH)_2 + 2S$$
 (S-1)

$$NiS + H_2O + \frac{1}{2}O_2 \rightarrow Ni(OH)_2 + S$$
 (S-2)

$$NiSe_2 + H_2O + \frac{1}{2}O_2 \rightarrow Ni(OH)_2 + 2Se$$
 (S-3)

The reversible redox reactions were as follows:

 $Ni(OH)_2 + OH^- \leftrightarrow NiOOH + H_2O + e^-$ (S-4)

$$NiO + OH^{-} \leftrightarrow NiOOH + e^{-}$$
(S-5)

Supplementary Figures

Fig. S1 TG cure of NiS₂ in air from 50 $^{\circ}$ C to 800 $^{\circ}$ C with a heating rate of 10 $^{\circ}$ C min⁻¹.

Fig. S2 SEM images of the product during prepare NiS₂ at different time: (A)8h; (B)12h; (C)16h; (D)20h.

Fig. S3 XRD pattern of the product NiS_2 (12h).

Fig. S4 EDS spectrums of the products: (A) NiS₂; (B) NiS; (C) NiO; (D) NiSe₂.

Fig. S5 CV curves of the electrodes at different scan rates: (A) NiS₂; (B) NiS; (C) NiO; (D) NiSe₂.

Fig. S6 discharge curves of the electrodes at various current densities: (A) NiS₂; (B) NiS; (C) NiO; (D) NiSe₂.

Fig. S7 (A) Charge-discharge curves of the bare Ni foam electrode; (B) specific capacitances of the bare Ni foam electrode at different cycles.

Table 1 Calculated electrochemical parameters for various working electrodes based on the

Working electrode	$R_e(\Omega \cdot cm^2)$	$R_{ct} \left(\Omega \cdot cm^2 \right)$	$Z_w \left(\Omega \cdot cm^2\right)$	CPE (F)
NiS ₂	1.107	0.573	5.042	9.964
NiS	0.912	0.628	7.681	10.702
NiO	0.725	1.033	3.302	14.790
NiSe ₂	0.639	1.257	8.045	9.492

proposed circuit.