Supporting Information

CH₃NH₂ Gas Induced (110) Preferred Cesium-Containing Perovskite Film with Reduced PbI₆ Octahedron Distortion and Enhanced Moisture Stability

Yue Chang,^{a,c} Li Wang,^b Jiliang Zhang,^d Zhongmin Zhou,^a Chongwen Li,^a

Bingbing Chen,^a Lioz Etgar,^e Guanglei Cui^{*,a} and Shuping Pang^{*,a}

^aQingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, P.R. China.

^bQingdao University of Science and Technology, Qingdao 266042, P. R. China.

^cUniversity of Chinese Academy of Sciences, Beijing 100080, China.

^dDepartment of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR.

eThe Hebrew University of Jerusalem, Institute of Chemistry, Casali Center for Applied Chemistry, Israel.

*email: cuigl@qibebt.ac.cn, pangsp@qibebt.ac.cn

Figure S1. (A) Fresh MAPbI₃ films prepared from the PbCl₂: 3MAI and PbI₂: MAI recipes. (B) The MAPbI₃ films exposed in air under a humidity of 40% for 2 days.

Figure S2. UV-Vis absorbance of $Cs_xMA_{1-x}PbI_3$ perovskite films, where x is varied from 0 to 0.1.

Figure S3. Top surface SEM image of $Cs_{0.1}MA_{0.9}PbI_3$ film (A) and its corresponding EDS maps for iodine (B), lead (C), and cesium (D).

Figure S4. SEM images of $Cs_{0.1}MA_{0.9}PbI_3$ perovskite films with different soaking time in MA gas: 0 s (A), 2 s (B), 6 s (C), 10 s (D), 20 s (E).

Figure S5. UV-Vis absorbance spectra of $Cs_{0.1}MA_{0.9}PbI_3$ perovskite films with different treating time in MA gas from 0 s to 20 s.

Figure S6. The efficiency distribution of the $Cs_{0.1}MA_{0.9}PbI_3$ perovskite solar cells fabricated by treating the perovskite films in MA gas from 0 s to 20 s.

Figure S7. The efficiency distribution of the $Cs_{0.1}MA_{0.9}PbI_3$ perovskite solar cells fabricated with different annealing time at 100°C from 0 min to 180 min.

Figure S8. External quantum efficiency (EQE) and integrated current (J_{sc}) of $Cs_xMA_{1-x}PbI_3$ (x=0, 0.1) solar cells.

Figure S9. Time-resolved PL measurements, with lifetimes τ_e quoted as the time taken to reach 1/e of the initial intensity for $Cs_xMA_{1-x}PbI_3$ (x=0, 0.1) solar cells.

Figure S10. (A) V_{oc} decay curves and (B) Electron lifetime τ_n extracted from $V_{oc}(t)$ as a function of V_{oc} of $Cs_xMA_{1-x}PbI_3$ (x=0, 0.1) solar cells.

The OCVD technique is a method that consists of turning off the illumination in a steady state and monitoring the subsequent decay of voltage, Voc. The response time is obtained by the reciprocal of the derivative of the decay curve normalized by the thermal voltage:

$$\tau_{\rm n} = -\frac{k_{\rm B}T}{e} \left(\frac{\mathrm{d}V_{\rm oc}}{\mathrm{d}t}\right)^{-1}$$

Figure S11. XRD patterns of Cs_xMA_{1-x}PbI₃ (x=0, 0.1) powder.

Figure S12. UV-Vis absorbance spectra of $Cs_xMA_{1-x}PbI_3$ (x=0, 0.1) perovskite films before and after one sun illumination for 3 h without any protection under a humidity of 40%.

Figure S13. Comparison of the stability of CsxMA1-xPbI3 (x=0, 0.1) perovskite solar cells.

The unsealed solar cells were kept under continuous illumination in 40% humidity condition. It is worth noting that the devices were kept at an open circuit condition, which can highly accelerate the ions migration than the short circuit state.