Supplementary Information (ESI)

Interfacial Al₂TiO₅ at TiO₂/Perovskite Interface to Decrease Carrier Losses in

Solar Cells

Bingxin Zhao^{1,2}, Xiaoru Wen^{2,4}, Minlin Jiang³, Jiamin Wu², Fei Lan³, Jinshu Wang^{1*},

Daniel den Engelsen¹, Guangyong Li^{3*} and Di Gao^{2*}

	Eff.(%)	J _{SC} (mA/cm ²)	V _{OC} (V)	FF
Ref.	16.32	21.98	0.97	0.765457
	16.21	22.33	0.97	0.748381
	16.15	21.73	0.97	0.766198
	15.12	22.18	0.95	0.717574
	15.2	22.53	0.97	0.695522
	16.32	22.29	0.99	0.739563
	14	22.49	0.94	0.662233
	14.4	21.35	0.97	0.695333
	14.08	20.65	0.96	0.71025
	15.2	22.18	0.95	0.721371
	15.89	22.44	0.96	0.737615
Al ¹ -PSC	17.34	23.53	0.97	0.759723
	16.83	23.17	0.97	0.748835
	17.85	23.81	0.99	0.757258
	17.76	23.89	0.98	0.758579
	16.25	21.86	0.97	0.766358
	16.33	22.18	0.97	0.759019
	17.55	23.66	0.98	0.756896
	17.28	23.27	0.97	0.765554
	16.8	22.41	0.99	0.757238
	16.72	22.48	0.98	0.758951
Al-PSC	18.72	23.66	1	0.791209
	17.255	23.09	0.99	0.754842
	17.82	22.98	1	0.775457
	18.43	23.28	1	0.791667
	16.83	22.644	0.98	0.758411
	17.01	23.15	0.96	0.765389

Table S1. Complete photovoltaic parameters of all cells.

	16.56	22.73	0.98	0.743421
	16.44	23.21	0.98	0.722771
	15.96	23.08	0.98	0.70562
	17.25	23.09	0.99	0.754623
Al ³ -PSC	16.47	23.25	0.98	0.722844
	17.55	23.67	0.99	0.748934
	16.38	22.93	0.97	0.736441
	16.3	22.45	0.96	0.75631
	16.34	22.75	0.98	0.7329
	15.96	22.77	0.99	0.708002
	16.3	22.45	0.96	0.75631
	15.1	22.43	0.96	0.701256
	15.49	23.59	0.97	0.676942

Figure S1. X-ray diffraction patterns (XRD) of perovskite films on FTO glass with Al and without Al.

Figure S2. J-V curves of Al-PSC measured with forward scan and reverse scan at a scan rate of 5mV/s.

Figure S3. Grazing Incidence XRD (GIXRD) patterns of Al-TiO₂ film on FTO. The

incidence angle for the GIXRD measurement was set as 0.3°.

Figure S4. Top-view SEM images of bare-perovskite(a) and A1 -perovskite(b) film, which shows high quality of perovskite film in large scale.

The morphology of the perovskite thin films was investigated by scanning electron microscopy (SEM). Fig. S5a and S5b indicate that there is no clear difference between the perovskite film and Al-perovskite film. Moreover, SEM images of bare perovskite and Al-perovskite films in large area are shown in Fig. S4, which indicate the uniformity of the MAPbI₃ layer extended over large distance. Grain size distributions of the perovskite films are shown in Fig. S5c. The average crystal size of the bare perovskite film is slightly larger compared to that of the Al-perovskite film. This may be induced by the presence of the Al-O, since the properties of perovskite thin films are highly dependent on the underlying layer.¹ The concentration of the Al source used in this work was deliberately controlled to be extremely low (see Experimental Procedure). Therefore, the mere presence of a small quantity of Al at the interface of perovskite/TiO₂ film results in slightly smaller perovskite crystals and does not affect the morphology itself. Other workers found that the efficiency of PSCs deteriorated upon decreasing the size of the perovskite crystals; however, our results rather gainsay that conclusion: upon adding Al³⁺ ions the size of the perovskite

crystals decreased slightly and the PSC efficiency improved.

Figure S5. Top-view SEM images of (a) perovskite film and (b) Al-perovskite film. The scale bar is 1 μ m. (c) The grain size distributions of the perovskite films on TiO₂ and Al-TiO₂ films.

Figure. S6. Nyquist plot of the devices measured at a forward bias of 5 mV under simulated solar light of 100 mW/cm², experimental data are presented in scattered point. Solid lines are the fits obtained using equivalent circuits previously used for solid DSSC with spiro-MeOTAD.²

The ref. PSC and Al-PSC have been measured in a frequency range from 10^2 Hz to 10^6 Hz. The semicircle of Al-PSC in Figure S6 shows a lower transport resistance.

Reference:

- 1. H. Oga, A. Saeki, Y. Ogomi, S. Hayase and S. Seki, *J Am Chem Soc*, 2014, **136**, 16948-16948.
- F. Fabregat-Santiago, J. Bisquert, L. Cevey, P. Chen, M. Wang, S. M. Zakeeruddin and M. Gratzel, J Am Chem Soc, 2009, 131, 558-562.