Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2016

Supplementary Information

Improved electrochemical performance of boron-doped carbon-coated lithium titanate as an anode material for sodium-ion batteries

Bin-Na Yun,^{ab} Hoang Long Du,^a Jang-Yeon Hwang,^b Hun-Gi Jung*ac and Yang-Kook Sun*b

^a Center for Energy Convergence, Green City Technology Institute, Korea Institute of Science

and Technology, Hwarangno 14 gil 5 Seongbuk-gu, Seoul 136-791, Republic of Korea.

E-mail: hungi@kist.re.kr

^b Department of Energy Engineering, Hanyang University, Seoul 133-791, Republic of Korea. E-mail: <u>yksun@hanyang.ac.kr</u>

^c Department of Energy and Environmental Engineering, Korea University of Science and Technology, 176 Gajungro, Yuseong-gu, Daejeon 305-350, Republic of Korea

Fig. S1 XRD patterns of boron-doped carbon-coated LTO synthesized with varying amounts of H₃BO₃: B2.5C-LTO (BC-LTO, 2.5 wt%), B5C-LTO (5 wt%), and B10C-LTO (10 wt%).

Fig. S2 SEM images at low magnifications of (a) P-LTO, (b) C-LTO, and (c) BC-LTO samples.

Fig. S3 TEM images of (a-b) P-LTO, (c-d) C-LTO and (e-f) BC-LTO.

Fig. S4 FT-IR spectra of P-LTO and BC-LTO samples.

The FT-IR spectrum of BC-LTO shows two notable bands that are not observed in the spectrum of pristine LTO. These bands at ~1038 and ~1150 cm⁻¹ correspond to B–O and C–B stretches, respectively. Commonly, C–B bands appear in the range of 1050–1200 cm⁻¹.^{1,2} The B–O and C–B stretches clearly indicate the formation of BC₂O and BCO₂.

Fig. S5 (a) Ti2p and (b) O1s XPS spectra for P-LTO, and (c) Ti2p and (d) O1s XPS spectra for BC-LTO.

Fig. S6 Rate capabilities for the sodium extraction process in pristine LTO, B2.5C-LTO, B5C-LTO, and B10C-LTO samples from 0.5 to 50 C, with a constant 0.5 C rate applied for the sodium insertion process.

Fig. S7 High-resolution XPS spectra of BC-LTO electrode at OCP, 0.8V and 0.1V.

Fig. S8 Cyclic voltammetry curves at a scan rate of 0.1 mV s-1 of (a) P-LTO, (b) C-LTO and (c) BC-LTO.

Fig. S9 Charge-discharge curves of BC-LTO electrode with different cycles at (a) 1, (b) 5, (c) 10 C- rate.

Material name	Specific capacity (mA h g^{-1})						Cycle	Loading amount	Reference
	0.1C	0.5C	1C	3C	5C	10C		(mg cm)	
BC-LTO	168.4	149	139.2	127.7	113.9	97.4	90% after 300 th cycle (1C, 5C, 10C)	1.6	This
Porous Li ₄ Ti ₅ O ₁₂	158	-	104	82 (2C)	-	-	93% after 100 th cycle (1C)	0.8-1	3
C-coated Li ₄ Ti ₅ O ₁₂ nanowire	168 (0.2C)	-	-	-	-	117	97% after 50 th cycle (0.2C)	-	4
Li ₄ Ti ₅ O ₁₂ nanorod	158	-	104	82 (2C)	-	-	$\sim 75\%^{*}$ after 100 th cycle (0.1C) $\sim 85\%^{*}$ at 200 th cycle (2C)	2.14	5
$Li_4Ti_5O_{12}$ nanosheet	-	-	-	-	-	115	93% after 150^{th} cycle (0.5C)	1.3	6
Na-doped Li ₄ Ti ₅ O ₁₂	175	154	139	120 (2C)	84 (4C)	56 (8C)	80% after 800 th cycle (2C)	1.4	7
MoS_2 -quantum-dot -interspersed Li ₄ Ti ₅ O ₁₂ nanosheet	-	-	-	118 (2C)	91	-	$\sim 85\%^*$ after t 200 th cycle (2C)	1-2	8
Graphene-wrapped porous Li ₄ Ti ₅ O ₁₂	200 (0.2C)	180 (0.6C)	145 (1.2C)	115	80 (6C)	58 (12C)	~95%* after 115 th cycle (0.2C) ~95%* after 12000 th cycle (3C)	1.5-2	9

 Table S1. Comparison of electrochemical properties of LTO materials for sodium-ion batteries.

* The cycle retention was calculated from the presented graph for cycle performance.

References

- 1. M. Sankaran and B. Viswanathan, Carbon, 2007, 45, 1628–1635.
- T. V. Khai, H. G. Na, D. S. Kwak, Y. J. Kwon, H. Ham, K. B. Shim and H. W. Kim, *Chem. Eng. J.*, 2012, 211–212, 369–377.
- G. Hasegawa, K. Kananori, T. Kiyomura, H. Kurata, K. Nakanishi and T. Abe, Adv. Energy Mater., 2015, 5, 1400730.
- K.-T. Kim, C.-Y. Yu, C. S. Yoon, S.-J. Kim, Y.-K. Sun and S.-T. Myung, *Nano Energy*, 2015, **12**, 725–734.
- Q. Zhou, L. Liu, J. Tan, Z. Yan, Z. Huang and X. Wang, J. Power Sources, 2015, 283, 243-250.
- X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, J.-G. Zhang and Y. Yu, ACS Appl. Mater. Interfaces, 2016, 8, 16718-16726.
- 7. F. Zhao, P. Xue, H. Ge, L. Li and B. Wang, J. Electrochem. Soc., 2016, 163, A690-A695.
- G. Xu, L. Yang, X. Wei, J. Ding, J. Zhong and P. K. Chu, Adv. Funct. Mater., 2016, 26, 3349-3358.
- C. Chen, H. Xu, T. Zhou, Z. Guo, L. Chen, M. Yan, L. Mai, P. Hu, S. Cheng, Y. Huang and J. Xie, Adv. Energy Mater. 2016, 6, 1600322.