Solar-driven Z-scheme water splitting using tantalum/nitrogen co-doped rutile titania nanorod as an oxygen evolution photocatalyst

Akinobu Nakada,^a Shunta Nishioka,^a Junie Jhon M. Vequizo,^b Kanemichi Muraoka,^a Tomoki Kanazawa,^a Akira Yamakata,^b Shunsuke Nozawa,^c Hiromu Kumagai,^a Shin-ichi Adachi,^c Osamu Ishitani,^a and Kazuhiko Maeda^{a*}

^aDepartment of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.

^bGraduate School of Engineering, Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511, Japan.

^cPhoton Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan.

*To whom corresponding author should be addressed.

TEL: +81-3-5734-2239, FAX: +81-3-5734-2284

Email: maedak@chem.titech.ac.jp

Electronic Supplementary Information

Fig. S1. Ta 4f XPS spectra of TiO₂:Ta, TiO₂:Ta/N samples, along with Ta_2O_5 and Ta_3N_5 as references.

Fig. S2. DRS of TiO₂:Ta samples (Ta/Ti = 0, 0.01, 0.05 and 0.10 by mole).

Fig. S3. SEM image of commercial TiO₂.

Fig. S4. XRD patterns of TiO₂:Ta/N samples at different nitridation temperatures.

Fig. S5. Ta L_3 -edge XANES spectra for TiO_{2:}Ta/N, TiO₂:Ta and Ta₂O₅.

Fig. S6. Mott-Schottky plots for (A) TiO_2 :Ta/N(773), (B) TiO_2 :N(773) and (C) TiO_2 :Ta electrodes at various pH values. Impedance frequency was 200 Hz.

Fig. S7. TEM image of RuO₂/TiO₂:Ta/N.

Fig. S8. Time-dependent photocatalytic O_2 evolution over RuO_2/TiO_2 :Ta,N(773) dispersed (50 mg) in an aqueous solution (100 mL) of NaIO₃ (1 mM) under irradiation at various wavelengths. Output current of the light source was 10 A (300 W, Xe lamp), which was one-half that used for other photocatalytic experiments in this study.

Fig. S9 (A) Current-voltage curves using a RuO_2/TiO_2 :Ta/N(773) electrode after TiCl₄ necking treatment under intermittent visible-light irradiation in aqueous solution containing Na₂SO₄ (0.1 M, pH 6.7). (B) Enlarged curves of (A) around the onset potential. Scan rate: 20 mV s⁻¹.

Fig. S10. Time-dependent photocatalytic H₂ evolution over Ru/SrTiO₃:Rh dispersed (50 mg) in an aqueous solution (100 mL) of NaI (1 mM, red) or FeCl₂ (1 mM, blue) under visible-light irradiation ($\lambda > 420$ nm). Saturation of O₂ generation in the Fe²⁺ solution was due to consumption of Fe²⁺.

Fig. S11. (A) XRD patterns and (B) DRS of as-prepared SrTiO₃:Rh.