Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Pt nanoparticles grown on 3D RuO₂-modified graphene architectures for highly

efficient methanol oxidation

Huajie Huang,*^a Jixin Zhu,^b Debo Li,^a Chao Shen,^a Miaomiao Li,^a Xin Zhang,^a Quanguo

Jiang,^a Jianfeng Zhang,^{*a} and Yuping Wu^a

^aCollege of Mechanics and Materials, Hohai University, Nanjing 210098, China

^bKey Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials

(IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM),

Nanjing Tech University (Nanjing Tech), 30 South Puzu Road, Nanjing 211816, China

*Corresponding authors.

E-mail address: huanghuajie@hhu.edu.cn (H. Huang), jfzhang@hhu.edu.cn (J. Zhang)

Fig. S1 The synthetic process for $RuO_2/graphene$ hybrid aerogel. It includes: (1) mixture of GO suspension, $RuCl_3$ and NaOH by magnetic stirring and ultrasonic treatment; (2) fabrication of $RuO_2/graphene$ hydrogel through a solvothermal reaction; (3) formation of $RuO_2/graphene$ aerogel by supercritical drying.

Fig. S2 FE-SEM images of the $Pt/RuO_2/G$ architecture at different magnifications, showing that the sample possesses an interconnected 3D porous structure.

Fig. S3 Representative FE-SEM images and Pt particle size distribution of (A and B) Pt/G and (C and D) Pt/C, respectively. It can be seen that the Pt particles in these samples have much larger sizes when compared with that of $Pt/RuO_2/G$ architecture.

Fig. S4 C 1s core-level XPS spectrum of GO suggests that there are a large number of oxygen functional groups on GO sheets.

Fig. S5 EDX spectrum of the Pt/RuO₂/G architecture, showing that the sample mainly

contains C, O, Pt and Ru elements.

Fig. S6 FT-IR spectra of GO and $Pt/RuO_2/G$ imply the successful reduction of GO to graphene during the solvothermal process.

Fig. S7 Linear sweep voltammetrys of (A) the Pt/RuO₂/G architectures with varying RuO₂ contents, and (B) Pt/RuO₂(20%)/G, Pt/G, PtRu/C, and Pt/C in 1 M H₂SO₄ with 2 M methanol solution at a scan rate of 20 mV s⁻¹. At a given current density, the Pt/RuO₂(20%)/G architecture possesses an apparently lower potential than other catalysts, indicating that the catalytic reaction could occur much more easily with the help of Pt/RuO₂(20%)/G.

Fig. S8 (A) CV curves of the $Pt/RuO_2(20\%)/G$ catalyst in 1 M H_2SO_4 solution with different scan rates. (B) CV curves of the $Pt/RuO_2(20\%)/G$ catalyst in 1 M H_2SO_4 and 2 M methanol solution with different scan rates.

Fig. S9 (A) CV curves of the Pt/RuO₂(20%)/G catalyst in H_2SO_4 solutions with different concentrations at 20 mV s⁻¹. (B) CVs of the Pt/RuO₂(20%)/G catalyst in mixture of H_2SO_4 and methanol solutions with different concentrations at 20 mV s⁻¹.

Fig. S10 CO stripping voltammograms for Pt/RuO₂(20%)/G, Pt/G, PtRu/C, and Pt/C catalysts recorded in 1 M H₂SO₄ solution at a scan rate of 20 mV s⁻¹, suggesting that Pt/RuO₂(20%)/G has the best anti-poisoning ability.

Fig. S11 Typical (A) FE-SEM image and (B) Pt particle size distribution of $Pt/RuO_2(20\%)/G$ architecture after the long-term chronoamperometric tests, revealing that the microstructure of $Pt/RuO_2(20\%)/G$ was well preserved under the electrocatalytic conditions.

Fig. S12 Nyquist plots of Pt/RuO₂(20%)/G electrode and the corresponding fitting curve, showing a good match between the experimental and fitting results. The inset is the equivalent circuit: R_s and R_{ct} represent the resistances of electrolyte and electrocatalyst, respectively, Q_{dl} is a constant phase element, W corresponds to semiinfinite diffusion at the interface between electrolyte and hybrid catalyst, R_f and C_f represent the resistance and capacitance of the Nafion-carbon film, respectively.