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Fig. S1 The synthetic process for RuO,/graphene hybrid aerogel. It includes: (1)
mixture of GO suspension, RuCl; and NaOH by magnetic stirring and ultrasonic
treatment; (2) fabrication of RuO,/graphene hydrogel through a solvothermal

reaction; (3) formation of RuO,/graphene aerogel by supercritical drying.

Fig. S2 FE-SEM images of the Pt/Ru0,/G architecture at different magnifications,

showing that the sample possesses an interconnected 3D porous structure.
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Fig. S3 Representative FE-SEM images and Pt particle size distribution of (A and B) Pt/G
and (C and D) Pt/C, respectively. It can be seen that the Pt particles in these samples

have much larger sizes when compared with that of Pt/RuO,/G architecture.
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Fig. S4 C 1s core-level XPS spectrum of GO suggests that there are a large number of

oxygen functional groups on GO sheets.
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Fig. S5 EDX spectrum of the Pt/Ru0,/G architecture, showing that the sample mainly

contains C, O, Pt and Ru elements.
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Fig. S6 FT-IR spectra of GO and Pt/Ru0,/G imply the successful reduction of GO to

graphene during the solvothermal process.
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Fig. S7 Linear sweep voltammetrys of (A) the Pt/RuO,/G architectures with varying
RuO, contents, and (B) Pt/Ru0,(20%)/G, Pt/G, PtRu/C, and Pt/C in 1 M H,SO, with 2
M methanol solution at a scan rate of 20 mV s™1. At a given current density, the
Pt/Ru0,(20%)/G architecture possesses an apparently lower potential than other
catalysts, indicating that the catalytic reaction could occur much more easily with the

help of Pt/Ru0,(20%)/G.
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Fig. S8 (A) CV curves of the Pt/Ru0,(20%)/G catalyst in 1 M H,SO, solution with
different scan rates. (B) CV curves of the Pt/Ru0,(20%)/G catalyst in 1 M H,SO, and 2

M methanol solution with different scan rates.
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Fig. S9 (A) CV curves of the Pt/Ru0,(20%)/G catalyst in H,SO, solutions with different

concentrations at 20 mV s, (B) CVs of the Pt/Ru0,(20%)/G catalyst in mixture of

H,SO, and methanol solutions with different concentrations at 20 mV s
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Fig. S10 CO stripping voltammograms for Pt/Ru0,(20%)/G, Pt/G, PtRu/C, and Pt/C

catalysts recorded in 1 M H,SO, solution at a scan rate of 20 mV s™%, suggesting that

Pt/Ru0,(20%)/G has the best anti-poisoning ability.
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Fig. S11 Typical (A) FE-SEM image and (B) Pt particle size distribution of
Pt/Ru0,(20%)/G architecture after the long-term chronoamperometric tests,
revealing that the microstructure of Pt/Ru0,(20%)/G was well preserved under the

electrocatalytic conditions.
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Fig. S12 Nyquist plots of Pt/Ru0,(20%)/G electrode and the corresponding fitting
curve, showing a good match between the experimental and fitting results. The inset
is the equivalent circuit: R, and R represent the resistances of electrolyte and
electrocatalyst, respectively, Qg is a constant phase element, W corresponds to
semiinfinite diffusion at the interface between electrolyte and hybrid catalyst, R; and

Cs represent the resistance and capacitance of the Nafion-carbon film, respectively.

7



