Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary information:

Constructing metal-anode rechargeable batteries utilizing concomitant intercalation of Li-Mg dual cations into Mo_6S_8

Hongyi Li,¹ Tetsu Ichitsubo,² Shunsuke Yagi,³ Eiichiro Matsubara,¹

¹Department of Materials Science and Engineering, Kyoto University, Kyoto 606-8501, Japan

²Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

³Institute of Industrial Science, The University of Tokyo, Tokyo 143-8505, Japan

X-ray diffraction (XRD) results

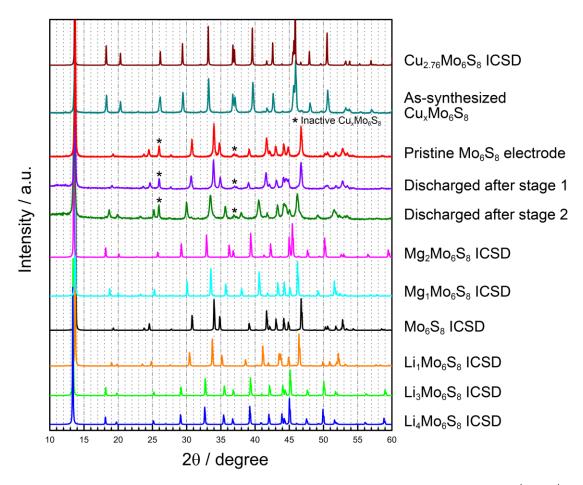


Fig. S1 XRD profiles of Mo₆S₈ electrodes were measured after discharging in 0.5 M Li(TFSA)-0.5 M Mg(TFSA)₂/G3. The XRD profiles labeled "Discharged after stage 1" and "Discharged after stage 2" correspond to the ICP results shown in Fig. 4.

Energy dispersive X-ray spectrometry (EDX) analysis

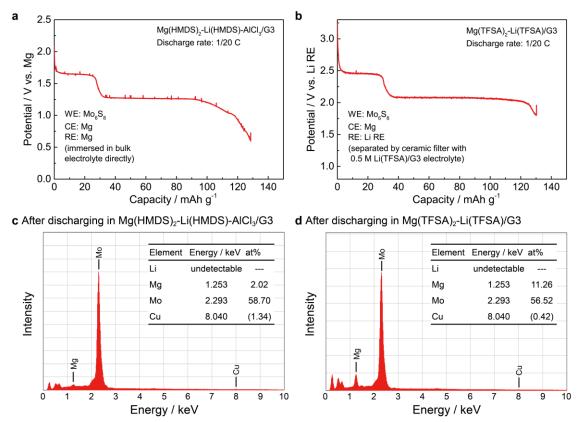


Fig. S2 EDX results for Mo₆S₈ electrodes discharged in (a) 0.5 M Li(HMDS)-0.5 M Mg(HMDS)₂-0.5 M AlCl₃/G3 electrolyte and (b) 0.5 M Li(TFSA)-0.5 M Mg(TFSA)₂/G3 electrolyte are shown in (c) and (d), respectively. In the inset tables, the Cu element is also included as a reference, but actually Cu was not detected in the EDX analysis.