Electronic Supplementary Information

One-Pot Surface Engineering of Battery Electrode Materials with Metallic SWCNT-Enriched, Ivy-Like Conductive Nanonets

JongTae Yoo,^{†a} Young-Wan Ju,^{†b} Ye-Ri Jang,^{†a} Ohhun Gwon,^a Sodam Park,^a Ju-Myung Kim,^a Chang Kee Lee,^c Sun-Young Lee,^d Sun-Hwa Yeon, ^{*e} Guntae Kim, ^{*a} and Sang-Young Lee^{*a}

^a Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Korea

^b Department of Chemical Engineering, College of Engineering, Wonkwang University, Iksan 54538, Korea.

^c Korea Packaging Center, Korea Institute of Industrial Technology, Ojeong-gu, Bucheon 14449, Korea

^d Department of Forest Products, Korea Forest Research Institute, Seoul 02455, Korea

^e Energy Storage Laboratory, Korea Institute of Energy Research (KIER), Daejeon 34129, Korea

[†]These authors contributed equally.

Correspondence and requests for materials should be addressed to S. -H. Yeon^e (email: <u>ys93@kier.re.kr</u>), G. Kim^a (email: <u>gtkim@unist.ac.kr</u>) and S. -Y. Lee^a (email: <u>syleek@unist.ac.kr</u>)

Figure S1. SEM images of the pristine OLO.

Figure S2. UV-vis-NIR spectra of the supernatants of PFO-dissolved SWCNT/OLO suspensions as a function of the initial PFO concentration.

Figure S3. (A) UV-vis-NIR spectra of the supernatants of the SWCNT/OLO suspensions with PFO as a function of the initial OLO content in the PFO (0.5 mg mL⁻¹)-dissolved SWCNT (1 mg)/OLO suspension. The pristine SWCNT suspension (dispersed without PFO in NMP) was examined as a control sample. (B) Raman spectra showing the G-band peaks of the OLO@mSC as a function of the initial OLO content in the PFO (0.5 mg mL⁻¹)-dissolved SWCNT (1 mg)/OLO suspension. Pristine SWCNTs were examined as the control sample.

Figure S4. SEM images of the pristine (A) LNMO and (B) LTO.

Figure S5. Charge/discharge profiles of the pristine OLO (top), OLO@SC (middle), and OLO@mSC (bottom) cathodes, wherein the cells were charged at a constant current density of 0.2 C (= 0.34 mA cm^{-2}) and discharged at various current densities ranging from 0.2 to 3.0 C.

Figure S6. Comparison of the electronic conductivity of the OLO@mSC cathodes as a function of the initial composition ratio of SWCNT/OLO in the suspensions.

Figure S7. Discharge rate performance of the OLO@mSC cathodes as a function of the initial composition ratio of SWCNT/OLO in the suspension, wherein the cells were charged at a constant current density of 0.2 C (= 0.34 mA cm^{-2}) and discharged at various current densities ranging from 0.2 to 5.0 C.

Figure S8. Charge/discharge profiles (for the 1st and 100th cycles) of the pristine OLO, OLO@SC, and OLO@mSC cathodes, wherein the cells were cycled at a charge/discharge current density of 5.0 C/5.0 C under voltage range of 2.0 - 4.7 V.

Figure S9. Comparison of the electronic conductivity between the pristine LNMO and LNMO@mSC.

Figure S10. Charge/discharge profiles (for the 1st and 200th cycles) of the pristine LNMO, LNMO@SC, and LNMO@mSC cathodes, wherein the cells were cycled at a charge/discharge current density of 5.0 C/5.0 C under voltage range of 3.5 - 4.95 V.

Figure S11. SEM images of the (A,B) pristine LNMO, (C,D) LNMO@SC, and (E,F) LNMO@mSC cathodes (A,C,E) before and (B,D,F) after the 200th cycle, wherein the cells were cycled at a charge/discharge current density of 5.0 C/5.0 C under voltage range of 3.5 - 4.95 V.

Figure S12. XRD pattern and SEM image (inset) of the as-synthesized NSC powders.

Figure S13. Ring current density profiles of NSC, NSC@SC, and NSC@mSC, which were investigated using RRDE measurements in an oxygen-saturated 0.1 M KOH aqueous solution (catalyst loading = 1.0 g cm^{-2} , scan rate = 10 mV s^{-1} , rotating rate = 1600 rpm).

Figure S14. OER polarization curves of NSC, NSC@SC, and NSC@mSC, which were investigated using the RRDE measurements in an oxygen-saturated 0.1 M KOH aqueous solution (catalyst loading = 1.0 g cm^{-2} , scan rate = 10 mV s^{-1} , rotating rate = 1600 rpm).

Figure S15. (A) ORR and (B) OER relative current of NSC, NSC@SC, and NSC@mSC respectively collected at -0.9 and 0.9 V for 1000 cycles, which were investigated using the RRDE measurements in an oxygen-saturated 0.1 M KOH aqueous solution (scan rate = 100 mV s⁻¹, rotating rate = 1600 rpm).

Table S1. Comparison of composite ratio, areal mass loading, areal capacities, and capacity retention for OLO cathodes (This work vs. Previous studies).

Publication /Engineering method	Composite ratio (%)			Mass	Capacity	Areal	Capacity
	Active material	Conductive agent	Binder	loading (mg cm ⁻²)	(mAh g _{cathode} ⁻¹)	capacity (mAh cm ⁻²)	retention (%) at RT
This work /metallic SWCNT-enriched coating	92	4	4	7	213 (at 0.2C)	1.62	94.0 (100 th) (at 5C/5C)
<i>J. Power Sources</i> , 2016, 327 , 273. /Boron doping	80	10	10	3.7	220 (at 0.1C)	1.02	89.9 (50 th) (at 0.2C/0.2C)
<i>Adv. Sci.</i> , 2016, 3 , 1600184. / <u>AIF₃-coated heterostructure</u>	80	10	10	4.5	170 (at ~0.3C)	0.96	98.0 (100 th) (at ~0.3C/0.3C)
Adv. Energy Mater., 2015, 5 , 1500274. /Inorganic surface coating	80	10	10	4.5	204 (at 0.1C)	1.15	84.3 (110 th) (at 1C/1C)
<i>J. Mater. Chem. A</i> , 2015, 3 , 17113. / <u>F_{0.3}–SnO₂ (FTO) coating</u>	80	10	10	2	237 (at 0.1C)	0.59	83.0 (300 th) (at ~0.3C/0.3C)
<i>J. Mater. Chem. A</i> , 2015, 3 , 13933. /Mesoporous Al ₂ O ₃ -polyacene coating	85	10	5	3	251 (at 0.1C)	0.89	95.0 (100 th) (at 1C/1C)
ACS Appl. Mater. Interfaces, 2014, 6, 21711. /AIF ₃ coating	80	10	10	3	200 (at 0.1C)	0.75	87.9 (50 th) (at 0.1C/0.1C)
<i>Adv. Energy Mater.</i> , 2013, 3 , 1299. /Atomic layer deposition (TiO ₂)	80	10	10	2.9	230 (at 0.1C)	0.83	78.0 (50 th) (at ~0.3C/0.3C)

Table S2. Comparison of composite ratio, areal mass loading, areal capacities, and capacity retention for LNMO cathodes (This work vs. Previous studies).

Publication /Engineering method	Composite ratio (%)			Mass	Capacity	Areal	Capacity
	Active material	Conductive agent	Binder	loading (mg cm ⁻²)	(mAh g _{cathode} ⁻¹)	capacity (mAh cm ⁻²)	retention (%)
This work /metallic SWCNT-enriched coating	85	7.5	7.5	7	116 (at 0.2C)	0.95	97.3 (200 th) (at 5C/5C)
<i>Adv. Funct. Mater.</i> , 2017, 27 , 1602873. / <u>Al₂O₃ coating</u>	80	10	10	3.5	115 (at 0.2C)	0.50	-
<i>J. Mater. Chem. A</i> , 2017, 5 , 145. /Incorporation of Li ₇ La ₃ Zr ₂ O ₁₂ (LLZO)	80	10	10	2.1	102 (at 0.1C)	0.27	95.9 (300 th) (at 0.5C/1C)
ACS Appl. Mater. Interfaces, 2016, 8, 9116. /Cr and Nb doping	82	10	8	3.1	107 (at 0.2C)	0.40	94.1 (500 th) (at 1C/1C)
<i>J. Mater. Chem. A</i> , 2015, 3 , 15457. / <u>RuO₂ coating</u>	80	10	10	2.3	96	0.28	14.4* (1000 th) (at 1C/1C)
<i>J. Power Sources</i> , 2015, 274 , 1254. /Atomic layer deposition (Al ₂ O ₃)	90	5	5	5.5	113 (at 0.1C)	0.69	98.0 % (150 th) (at 0.5C/0.5C)
ACS Appl. Mater. Interfaces, 2015, 7, 16231. /TiO ₂ and Al ₂ O ₃ coating	100	0	0	0.81	106 (at ~0.1C)	0.09	-

* = Approximately calculated values

Publication	Electrocatalyst	Electron transfer number for ORR (n)	Peroxide yield for ORR (%)	OER relative current (%)
This work	Perovskite (Nd _{0.5} Sr _{0.5} CoO _{3-δ}) modified by metallic-enriched SWCNTs	3.83 - 3.91	< 9	91 after 1,000 cycles (at 100 mV s ⁻¹)
<i>Nano Energy</i> , 2017, 31 , 541.	NiCo ₂ S ₄ nanocrystal anchored on N-doped CNTs	~3.80	<~10	-
J. Mater. Chem. A, 2016, 4 , 2122.	Perovskite $(Nd_{0.5}Sr_{0.5}CoO_{3-\delta})$ coated by I- doped graphenes	3.68* - 3.80	< 10	$\sim 95^*$ after 10 cycles (at 10 mV s ⁻¹)
J. Mater. Chem. A, 2016, 4, 4516.	Pt/C-LiCoO ₂ composites	~3.92	< 4	86 after 50 cycles (at 10 mV s ⁻¹) 50^*
<i>Danton Trans.</i> , 2016, 45 , 18494.	Cubic α -Mn ₂ O ₃ prisms	3.55* - 3.71*	$< \sim 20^{*}$	~50 after 300 cycles (at 10 mV s ⁻¹)
<i>Adv. Energy Mater.</i> , 2015, 5 , 1501560.	Perovskite $(Ba_{0.5}Sr_{0.5}Co_xFe_{1-x}O_{3-\delta})$ with amorphous thin layers	3.59 - 3.71	<~23*	-
Angew. Chem. Int. Ed., 2014, 53 , 4582.	Perovskite ($La_{0.3}(Ba_{0.5}Sr_{0.5})_{0.7}Co_{0.8}Fe_{0.2}O_{3-\delta}$)	~3.72	< 20	-

Table S3. Comparison of catalytic activities for ORR/OER bifunctional catalysts (This work vs. Previous studies).

* = Approximately calculated values