Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Unique allosteric effect driven rapid absorption of carbon dioxide on a new ionogel [P₄₄₄₄][2-Op]@MCM-41 with excellent cyclic stability and loading-dependent capacity

Chunfeng Xue^{a*}, Hongye Zhu^a, Xiao Du^a, Xiaowei An^a, Enyang Wang^a, Donghong Duan^a, Lijuan Shi^a, Xiaogang Hao^{a*}, Bo Xiao^b, Changjun Peng^c

^a Department of Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China

^b School of Chemistry and Chemical Engineering, Queen's University Belfast, Belfast, BT7-1NN, Northern

Ireland, UK

^c State Key Laboratory of Chemical Engineering and Department of Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China

Fig. S1 Absorption isotherm curve from bubble CO₂ in the pure IL [P₄₄₄₄][2-Op] at 50 °C and ordinary

pressure

Fig. S2 ¹³C NMR of the IL [P₄₄₄₄][2-Op]

CO₂ cylinder; 2. N₂ cylinder; 3. CO₂ mass flow controller; 4. N₂ mass flow controller; 5. Flow readout box;
Flow readout box; 7. Sample cell; 8. Heating jacket; 9. Adsorbent; 10. Temperature controller; 11. Gas analyzer.

Fig. S3. Diagram of the CO_2 adsorption setup at atmospheric pressure

Fig. S4. Bonding styles and bounding energy: (a) $[P_{4444}]$ cation of IL $[P_{4444}]$ [2-Op] close to the surface of silica MCM-41, (b) [2-Op] anion IL $[P_{4444}]$ [2-Op] close to the surface of silica MCM-41, and (c) the two IL pair of $[P_{4444}]$ [2-Op] arranged with staggered structure.

Table S1. Mulliken atomic charges in different circumstance of materials

Material	Group	Mulliken atomic charge		
		Before loading	After loading	
[P ₄₄₄₄][2-Op]	Ν	-0.452	-0.478	
	0	-0.638	-0.643	
MCM-41	OH(1)	-0.365	-0.368	
	OH(2)	-0.364	-0.365	
	OH(3)	-0.420	-0.422	
	OH(4)	-0.392	-0.395	
	OH(5)	-0.407	-0.410	
	OH(6)	-0.329 c	-0.368	

Sample	Adsorption	Adsorption	Capacity,	Reference
	Temperature	time (min.)	(mmol/g)	
5%[P ₄₄₄₄][2-Op]/MCM-41	50 °C	4.67	1.21	This study
33.3%BMIMCI/ZrP	60 °C	180	0.73	1
33.3%BMIMCI/MMT	70 °C		0.42	
15%PAP/MCM-41	120 °C	Unavailable	0.48	2
15%PA/MCM-41			0.37	
50%[P ₆₆₆₁₄][2-Op]/MCM-41	19 °C	240	0.905	3
[P(C ₄) ₄][Gly]/8SiO ₂	25 °C	800	0.205	4
50% [EMIM][Arg]/PMMA	40 °C	45	1.01	
50% [EMIM][Ala]/PMMA	40 °C	45	1.38	
50% [EMIM][Gly]/PMMA	25 °C	45	1.71	5
50% [EMIM][Gly]/PMMA	40 °C	45	1.53	
50% [EMIM][Gly]/PMMA	80 °C	45	1.02	
25%SALG-AT-EZT3/SiO ₂	40 °C	333.33	2.01	6
25%EZT3/ZSM-5	40 °C	333.33	2.93	
25%EZT3/Nano-SiO ₂	40 °C	333.33	3.38	7
25%EZT3/Fumed SiO ₂	40 °C	333.33	2.74	
25%Arg/PMMA	40 °C	333.33	1.3	8
50%DBUOH/silica gel	25 °C	300	1.93	9
40% DBUOH/MCM-41	25 °C	300	1.85	
60% DBUOH/SBA-15	25 °C	300	2.49	
50%EZT3/SBA-15	40 °C	Unavailable	4.7	10
60%TM/MCM-41	55 °C	60	3.706	11

Table S2 Comparison of CO_2 absorption capacities of absorbents at ordinary pressure

The quantum chemical calculation was performed using the DMOL3 module included in the Accelrys Material Studio 6.0 software package. GGA/PBE/DNP+ with an all-electron method was used for these calculations.

Fig. S5 The surface electrostatic potential of $[P_{4444}]$ cation of $[P_{4444}]$ [2-Op] IL close to the surface of silica MCM-41.

Fig. S6 Ten cycles of CO_2 adsorption/desorption capacity of the ionogel PM-5 at 50 °C

Fig. S7. CO_2 adsorption capacity of ionogel PM-5 recorded in gas mixture with CO_2 partial pressure of 0.1435 (a) and 0.0988 (b) at different temperatures of 30, 50, and 70 °C.

References:

- Y. Zhou, J. Liu, M. Xiao, Y. Meng and L. Sun, ACS Applied Materials & Interfaces, 2016, 8, 5547-5555.
- 2. M. M. Wan, H. Y. Zhu, Y. Y. Li, J. Ma, S. Liu and J. H. Zhu, ACS Applied Materials & Interfaces, 2014, 6, 12947-12955.
- 3. J. Cheng, Y. Li, L. Hu, J. Zhou and K. Cen, *Energy & Fuels*, 2016, **30**, 3251-3256.
- 4. J. Zhang, S. Zhang, K. Dong, Y. Zhang, Y. Shen and X. Lv, *Chemistry A European Journal*, 2006, **12**, 4021-4026.
- 5. X. Wang, N. G. Akhmedov, Y. Duan, D. Luebke and B. Li, *Journal of Materials Chemistry A*, 2013, **1**, 2978-2982.
- I. H. Arellano, S. H. Madani, J. Huang and P. Pendleton, *Chemical Engineering Journal*, 2016, **283**, 692-702.

- 7. I. H. Arellano, J. Huang and P. Pendleton, *RSC Advances*, 2015, **5**, 65074-65083.
- B. Jiang, X. Wang, M. L. Gray, Y. Duan, D. Luebke and B. Li, *Applied Energy*, 2013, **109**, 112-118.
- S. Lee, S.-Y. Moon, H. Kim, J.-S. Bae, E. Jeon, H.-Y. Ahn and J.-W. Park, *RSC Advances*, 2014, 4, 1543-1550.
- I. H. Arellano, J. Huang and P. Pendleton, *Chemical Engineering Journal*, 2015, 281, 119-125.
- 11. X. Zhang, X. Zheng, S. Zhang, B. Zhao and W. Wu, *Industrial & Engineering Chemistry Research*, 2012, **51**, 15163-15169.