Supplementary Information

Compositional Tailoring Effect on Electric Field Distribution for Significantly Enhanced Breakdown Strength and Restrained Conductive Loss in Sandwich-Structured Ceramic/Polymer Nanocomposites

Yifei Wang^a, Jin Cui^a, Linxi Wang^a, Qibin Yuan^a, Yujuan Niu^a, Jie Chen^a, Qing Wang^b, Hong Wang^a,*

^aState Key Laboratory for Mechanical Behavior of Materials & School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an, 710049, China ^bDepartment of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802 USA

*Corresponding author. E-mail address: hwang@mail.xjtu.edu.cn

Figure S1. Frequency dependent (a) permittivity and (b) dielectric loss of single layer BT/PVDF nanocomposites.

Figure S2. D-E loops of sandwich BT/PVDF nanocomposites and pure PVDF.

Figure S3. (a) D-E loops and (b) energy storage properties of single layer BT/PVDF nanocomposites.

Figure S4. The distribution of electric potential in sandwich BT/PVDF nanocomposites with (a) 1 vol%, (b) 3 vol%, (c) 7 vol%, (d) 11 vol%, and (e) 16 vol% BT nanoparticles in outer layers by finite element simulation.

Figure S5. Charged energy density of sandwich BT/PVDF nanocomposites measured at varied electric fields.

Figure S6. (a) Discharged energy density, (b) discharge efficiency, (c) conductive loss, and (d) ferroelectric loss of "3-0-3", "3", and pure PVDF measured at varied fields.

Figure S7. (a) Experimental conductivity and simulated conductivity by interpolation fitting method of pure PVDF films.