Supporting Information

Carbon and Binder-Free 3D Porous Perovskite Oxide Air Electrode for Rechargeable Lithium-oxygen Batteries

Thien Viet Pham, Hai Peng Guo, Wen Bin Luo*, Shu Lei Chou, Jia Zhao Wang*, and Hua Kun Liu

Experimental section

Synthesis of LaNiO₃, LaNi_{0.9}Cu_{0.1}O₃, and LaNi_{0.9}Co_{0.1}O₃ on Ni foam: LaNiO₃ on Ni foam was synthesized by a hydrothermal process. 1 mmol La(NO₃)₃·6H₂O, 1 mmol Ni(NO₃)₂·6H₂O, and 14 mmol KOH were dissolved in 45 mL of water. Nickel foam was cut into circular shapes 1.9 cm in diameter. Then, it was immersed in 6 M HCl solution to remove any oxide surface layers. Afterwards, the nickel foam and the aqueous solution were transferred to a Teflonlined stainless-steel autoclave, which was sealed and maintained at 160 °C for 8 h. Finally, the product was taken out, washed, vacuum dried and then thermally treated at 400 °C in nitrogen for 2 h. The mass loading of LaNiO₃ on Ni foam was calculated from the difference in weight between the pristine Ni foam and the LaNiO₃ coated foam. The same hydrothermal process with different amounts of precursors was carried out to dope LaNiO₃ with Cu and Co. The quantity of 0.1 mmol of Cu(NO₃)₂·3H₂O or 0.1 mmol of Co(NO₃)₂·6H₂O was added to the aqueous solution to synthesize LaNi_{0.9}Cu_{0.1}O₃ and LaNi_{0.9}Co_{0.1}O₃ on Ni foam.

Characterization: All the samples were characterized by X-ray powder diffraction (XRD; GBC MMA) with Cu K α radiation that was operated over a 2θ range of 15°–80°. The morphological studies were performed by field emission scanning electron microscopy (FE-SEM; JEOL-JSM-7500). Scanning transmission electron microscopy (STEM; JEOL ARM-200F), selected area electron diffraction (SAED), and TEM energy-dispersive X-ray spectroscopy (EDS) were used to investigate the single nanosheet structure and the doping

effects of Cu and Co on LaNiO₃. Prior to the XRD analysis of the fully discharged cathode, the cell was opened in a glove box. The discharged sample was sealed with Kapton tape when transferred from the glove box to the atmosphere to avoid any reaction of the final products with moisture.

Electrochemical measurements: All the cells were assembled in an argon-filled glove box, using the catalyst on Ni foam as cathode, a glass fibre separator, a lithium metal foil anode, and an electrolyte containing 1 M LiCF₃SO₃ in TEGDME. For the TTF experiment, 0.1 mM TTF was added to the electrolyte as redox mediator. For CV testing, the cells were sealed in a self-designed bottle in the glove box. Then, the bottle was transferred to the atmosphere, unsealed, filled with O₂, and sealed again for CV testing. The CVs were obtained between 2 V and 4.5 V at a scan rate of 0.2 mV s⁻¹. In these tests, LaNi_{0.9}Cu_{0.1}O₃ or LaNi_{0.9}Co_{0.1}O₃ on Ni foam acted as the working electrode. On the other hand, lithium foil served as both counter and reference electrode. All battery tests were carried out on LAND CT 2001A multi-channel battery testers at room temperature in oxygen atmosphere. The discharge-charge cycling was performed with the specific capacity limited to 1000 mAh g⁻¹ at a current density of 0.1 mA cm⁻². All the potentials throughout this paper are referred to the potential of the Li/Li⁺ standard couple.

The aqueous electrochemical tests involving a rotating disk electrode (RDE) were carried out using a computer-controlled potentiostat (Biological VMP3) with a typical three-electrode cell, including a platinum wire as the counter electrode and an Ag/AgCl (saturated KCl filled) electrode as the reference electrode. The working electrodes were glassy carbon (GC) disk electrodes (5 mm in diameter) loaded with the respective active material inks. Typically, 5 mg of sample and 100 μ L of 5 wt% Nafion[®] solution were dispersed in 1 mL water/isopropanol (3/1; v/v) solution and ultrasonicated for 30 min to form a uniform catalyst ink (~ 5 mg ml⁻¹). A total of 4.5 μ L of the well-dispersed catalyst ink was applied on a pre-polished GC disk

electrode. The as-prepared electrodes were dried at room temperature overnight prior to the electrochemical tests. The detailed kinetic analysis was conducted according to Koutecky-

Levich plots
$$\frac{1}{j} = \frac{1}{j^k} + \frac{1}{Bw^{0.5}}$$
(1)

where j is the current density, j_k is the kinetic current, and B is the Levich slope, which is given by

$$B = 0.2nF({}^{D_{0_2}})^{2/3}v^{-1/6}{}^{C_{0_2}}$$
⁽²⁾

Here, *n* is the number of electrons transferred in the reduction of one O₂ molecule, *F* is the Faraday constant ($F = 96\ 485\ C\ mol^{-1}$), ${}^{D_{0_2}}$ is the diffusion coefficient of O₂ (${}^{D_{0_2}} = 1.9 \times 10^{-5}\ cm^2\ s^{-1}$), v is the kinematic viscosity for KOH ($v = 0.01\ cm^2\ s^{-1}$), and ${}^{C_{0_2}}$ is the concentration of O₂ in the solution (${}^{C_{0_2}} = 1.2 \times 10^{-6}\ mol\ cm^{-3}$). The constant 0.2 is adopted when the rotation speed is expressed in rpm. According to Equations (1) and (2), the number of electrons transferred (*n*) can be obtained from the slope of the Koutecky–Levich plot of j^{-1} versus $\omega^{-1/2}$.

Figure S1. Oxygen spectra of $LaNiO_3$, $LaNi_{0.9}Co_{0.1}O_3$, $LaNi_{0.9}Cu_{0.1}O_3$ perovskite oxides.

Figure S2. (a, b) TEM images of $LaNiO_3$ sample at different magnifications with insets containing the corresponding SAED patterns; (c) TEM EDS mapping of La, Ni, and O for a single $LaNiO_3$ nanosheet; (d) individual TEM EDS maps of La, Ni, and O elements for the same nanosheet; (e) EDS spectrum of $LaNiO_3$ sample.

Figure S3. (a, b) TEM images of $LaNi_{0.9}Co_{0.1}O_3$ sample at different magnifications with the insets containing the corresponding SAED patterns; (c) TEM EDS mapping of La, Ni, Co, and O for a single $LaNi_{0.9}Co_{0.1}O_3$ nanosheet; (d) individual TEM EDS maps of La, Ni, Co, and O elements for the same nanosheet; (e) EDS spectrum of $LaNi_{0.9}Co_{0.1}O_3$ sample.

Figure S4. RDE curves of (a) LaNiO₃, (b) LaNi_{0.9}Co_{0.1}O₃, and (c) LaNi_{0.9}Cu_{0.1}O₃ in O₂saturated 0.1 M KOH solution with various rotation speeds and a sweep rate of 10 mV s⁻¹; with the insets showing the corresponding K–L plots (J^{-1} versus $\omega^{-1/2}$) at different potentials. (d) RDE curves of LaNiO₃, LaNi_{0.9}Cu_{0.1}O₃, and LaNi_{0.9}Co_{0.1}O₃ at rotation speed of 1600 rpm.

Figure S5 Cycling performance of (a) $LaNiO_3$ and (b) $LaNi_{0.9}Co_{0.1}O_3$ at 0. 1 mA cm⁻² with capacity limited to 1000 mAh g⁻¹

Figure S6. OER curves of (a) LaNiO₃, (b) LaNi_{0.9}Co_{0.1}O₃, and (c) LaNi_{0.9}Cu_{0.1}O₃ in O₂-saturated electrolyte at 0.2 mV s⁻¹.