Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2017

Supplementary Information

MnO₂ Nanoflowers and Polyaniline Nanoribbons Grown on Hybrid

Graphene/Ni 3D Scaffold by In-situ Electrochemical Technique for High-

performance Asymmetric Supercapacitors

Liqiong Wu,^a Lihua Hao,^a Bowen Pang,^b Guofeng Wang,^a Yin Zhang,^a and Xinheng Li^{a,*}

^a State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research

Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese

Academy of Sciences, Suzhou 215123, P. R. China.

^b College of Chemistry and Chemical Engineering, Xinxiang University, 453003, China

E-mail: xinhengli@licp.cas.cn

Figure S1. Nitrogen adsorption-desorption isotherm (a) and pore size distribution (b) of the as-prepared GF.

Figure S2. TEM images of MnO_2 (a) and PANI (b) peeled off from Ni foam.

Figure S3. Cycling behaviour of the obtained $MnO_2/HGNF$ and PANI/HGNF electrodes in 1 M Na_2SO_4 solution at a current density of 2 A g⁻¹.

Figure S4. SEM images of $MnO_2/HGNF$ (a,b) and PANI/HGNF (c,d) electrodes in ASC-1 after 2000 cycles at a current density of 2 A g⁻¹.

Figure S5. TEM images of $MnO_2/HGNF$ (a,b,) and PANI/HGNF (c,d) in ASC-1 after 2000 cycles at a current density of 2 A g⁻¹.