Supplementary Information

Controllable Synthesis of Molybdenum-Based Electrocatalysts for

Hydrogen Evolution Reaction

Junpo Guo[‡], Jie Wang[‡], Zexing Wu, Wen Lei, Jing Zhu, Kedong Xia and Deli Wang^{*}

Key Laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China. *E-mail: wangdl81125@hust.edu.cn.

^{*t*} These authors contributed equally to this work

	Lattice plane	20, degree	D ₁ , nm	$\overline{\mathrm{D}}$, nm	D ₂ , nm
MoO ₂ /C	(111)	26.13	7.43		
	(211)	37.08	8.84	8.49	8.3
	(312)	49.54	9.21		
MoC/C	(111)	36.39	3.64		
	(200)	42.27	2.74	3.26	3.2
	(220)	61.31	3.41		
Mo ₂ C/C	(002)	38.04	3.16		
	(101)	39.58	3.06	3.0	2.5
	(110)	61.86	2.67		

Table S1. Structural parameters and particle sizes for molybdenum-basedcompounds.

D1: Particle sizes calculated from XRD patterns for Mo composite catalysts; D: Average particle sizes; D2: Particle sizes obtained from TEM images.

Catalysts	Tafel slope	j ₀	η_{10}	Electrolyte	Refs
	mV dec ⁻¹	$mA cm^{-2}$	mV		
Bulk Mo ₂ C	56	1.3*10 ⁻³	210	$1 \mathrm{MH}_2 \mathrm{SO}_4$	1
Np-Mo ₂ C NWS	53	$1.4*10^{-3}$	130	$0.5 \mathrm{M} \mathrm{H}_2 \mathrm{SO}_4$	2
Mo ₂ C/CNT	55.2	$1.4*10^{-2}$	152	0.1 M HClO ₄	3
Mo ₂ C/GCS	62.6	$1.25*10^{-2}$	200	$0.5 \mathrm{MH}_2 \mathrm{SO}_4$	4
Mo ₂ C/CNT-GR	58	$6.2*10^{-2}$	130	$0.5 \text{ MH}_2\text{SO}_4$	5
Mo ₂ C-RGO	54		130	$0.5 \mathrm{MH}_2 \mathrm{SO}_4$	6
Mo ₂ C-NCNT	71	0.115	147	0.5 M H ₂ SO ₄	7
MoC _x	53	$2.3*10^{-2}$	142	$0.5 \text{ MH}_2\text{SO}_4$	8
MoO ₂ /RGO	68		310	$0.5 \text{ MH}_2\text{SO}_4$	9
MoS ₂ /MoO ₂	76		240	$0.5 \text{ MH}_2\text{SO}_4$	10
MoC-G	88	$2.6*10^{-2}$	221	$0.5 \text{ MH}_2\text{SO}_4$	11
MoC@NC	68	$1.7*10^{-2}$	210	0.5 M H ₂ SO ₄	12
MoO ₂ /C	107.1	0.05	246	$0.5 \text{ MH}_2\text{SO}_4$	This
MoC/C	91.1	0.13	179	$0.5 \text{ MH}_2\text{SO}_4$	
Mo ₂ C/C	75.1	0.36	135	$0.5 \text{ MH}_2 \text{SO}_4$	work

Table S2. Comparison of the HER performance of molybdenum compounds reportedin literature in acid media.

Catalysts	Tafel slope	j_0	η_{10}	Electrolyte	Refs
	$mV dec^{-1}$	$mA cm^{-2}$	mV		
MoC _x	59	2.9×10^{-2}	151	1M KOH	8
NiMo ₂ C/NF	36.8	0.51	47	6M KOH	10
Mo ₂ C	58		176	1M KOH	13
nanoparticle					
Mo ₂ C	45	1.1×10^{-2}	130	1M KOH	14
nanorad					
Ni-MoO ₂			257	1M KOH	7
MoO ₂ /C	88.0	0.05	184	1M KOH	This
MoC/C	75.1	0.14	138	1M KOH	
Mo ₂ C/C	62.2	0.25	96	1M KOH	work

Table S3. Comparison of the HER performance of molybdenum compounds reported in literature in alkaline media.

Figure S1. (a) XRD pattern of solvothermal product; (b) Raman spectra of solvothermal product and Mo_2C/C nanocatalyst.

Figure S2. Thermo gravimetric analysis (TGA) of solvothermal product tested under flowing N_2 atmosphere.

Figure S3. Powder XRD patterns of D2-Mo₂C, D4-Mo₂C and D6-Mo₂C.

Figure S4. TEM images of D4-Mo₂C

Figure S5. Polarization curves of D2-Mo₂C, D4-Mo₂C and D6-Mo₂C in 0.5 M H_2SO_4 solution (a) and 1 M KOH solution (b).

Figure S6. Cyclic voltammograms (CVs) of MoO_2/C (a) and MoC/C (b) in 0.5 M H_2SO_4 solution between 0.2 V and 0.4 V at scan rates ranging from 20 to 180 mV s⁻¹.

Fig S7. Cyclic voltammograms (CVs) of D2-Mo2C (a), D4-Mo₂C (b) and D6-Mo₂C (c) in 0.5 M H₂SO₄ solution between 0.2 V and 0.4 V at scan rates ranging from 20 to 180 mV s⁻¹; (d) Capacitive current at 0.3 V as a function of scan rate ($\Delta j_0 = j_a - j_c$).

Figure S8. Electrical Equivalent circuit models for fitting the EIS response on Mo-based catalysts, where R_s is the solution resistance, R_{ct} represents the charge transfer resistance, and the double layer capacitance is represented by the elements CPE.

Figure S9. Nyquist plots of D2-Mo₂C, D4-Mo₂C and D6-Mo₂C recorded at 150 mV in 0.5 M H_2SO_4 solution.

Figure S10. Tafel plots and the corresponding exchange current density of MoO_2/C , MoC/C, Mo_2C/C and Pt/C in 0.5 M H_2SO_4 (a) and 1 M KOH solution (b).

1 H. Vrubel and X. Hu, Angew. Chem., 2012, **124**, 12875-12878.

L. Liao, S. Wang, J. Xiao, X. Bian, Y. Zhang, M. D. Scanlon, X. Hu, Y. Tang, B. Liu and H. H. Girault, Energy Environ. Sci., 2014, **7**, 387-392.

3 W.-F. Chen, C.-H. Wang, K. Sasaki, N. Marinkovic, W. Xu, J. Muckerman, Y. Zhu and R. Adzic, Energy Environ. Sci., 2013, **6**, 943-951.

4 W. Cui, N. Cheng, Q. Liu, C. Ge, A. M. Asiri and X. Sun, ACS Catal. 2014, 4, 2658-2661.

5 D. H. Youn, S. Han, J. Y. Kim, H. Park, S. H. Choi and J. S. Lee, ACS Nano, 2014, **8**, 5164-5173.

6 L. F. Pan, Y. H. Li, S. Yang, P. F. Liu, M. Q. Yu and H. G. Yang, Chem. Commun., 2014, **50**, 13135-13137.

7 K. Zhang, Y. Zhao, D. Fu and Y. Chen, J. Mater. Chem. A, 2015, **3**, 5783-5788.

8 H. B. Wu, B. Y. Xia, L. Yu, X.-Y. Yu, X. W. D. Lou, Nat. Commun., 2015, **6**, 6512-6519.

9 L. Wu, X. Wang, Y. Sun, Y. Liu and J. Li, Nanoscale, 2015, **7**, 7040-7044.

10 L. Yang, W. Zhou, D. Hou, K. Zhou, G. Li, Z. Tang, L. Li and S. Chen, Nanoscale, 2015, **7**, 5203-5208.

11 C. He and J. Tao, Chem. Commun., 2015, **51**, 8323-8325.

12 R. Ma, Y. Zhou, Y. Chen, P. Li, Q. Liu and J. Wang, Angew. Chem. Int. Ed., 2015, 54, 14723-14727.

13 L. Ma, L. R. L. Ting, V. Molinari, C. Giordano and B. S. Yeo, J. Mater. Chem. A, 2015, **3**, 8361-8368.

14 P. Xiao, Y. Yan, X. Ge, Z. Liu, J.-Y. Wang and X. Wang, Appl. Catal. B: Environ., 2014, **154**, 232-237.